

Facoltà di Ingegneria

CORSO DI LAUREA IN:

INGEGNERIA DELLE COSTRUZIONI EDILI E DEI SISTEMI AMBIENTALI

Insegnamento: COSTRUZIONI IDRAULICHE

OGGETTO:
"QUADERNO DELLE ESERCITAZIONI"

ESERCITAZIONE N. 1:

Regolarizzazione curve di caso critico

Si determinino i parametri della curva di caso critico regolarizzata, caratterizzata da un tempo di ritorno di 25 anni, per la stazione pluviometrica di Viterbo. Di detta stazione sono stati registrati nel corso di più anni oltre 300 eventi di forte intensità e breve durata, di cui si riportano i valori nella tabella allegata. Si determini inoltre la curva di probabilità pluviometrica associata alle curve di caso critico precedentemente ricavate.

SVOLGIMENTO

1) Il primo passo da seguire è la selezione dei dati registrati, relativi alla stazione pluviometrica di Viterbo:

ore	1/2	1	3	6	12	24
Anno						
28	5,0	8,0	18,0	30,8	35,6	53,6
28	9,6	15,0	0,0	0,0	0,0	0,0
28	10,0	15,8	0,0	0,0	0,0	0,0
28	20,0	25,0	25,8	0,0	0,0	0,0
28	24,0	31,6	0,0	0,0	0,0	0,0
28	5,8	9,0	13,4	23,0	37,0	50,6
28	8,8	12,6	21,4	26,8	33,6	0,0
29	3,8	7,0	18,0	28,0	41,8	0,0
29	10,6	0,0	0,0	0,0	0,0	0,0
29	17,5	0,0	0,0	0,0	0,0	0,0
29	21,0	27,0	33,2	0,0	0,0	0,0
29	10,8	15,0	26,0	37,4	49,2	49,4
30	11,0	13,6	0,0	0,0	0,0	0,0
30	14,0	17,8	0,0	0,0	0,0	0,0
30	15,2	19,0	20,0	0,0	0,0	0,0
30	21,8	25,4	29,5	0,0	0,0	0,0
30	7,6	12,2	25,0	44,8	0,0	0,0
31	5,2	9,0	19,2	0,0	0,0	0,0
31	25,0	36,0	49,0	56,7	57,8	68,8
32	12,0	16,8	0,0	0,0	0,0	0,0
32	9,4	13,6	0,0	0,0	0,0	0,0
32	25,0	36,4	49,2	49,8	50,0	51,8
32	7,8	11,0	0,0	0,0	0,0	0,0
33	15,0	15,2	17,4	0,0	0,0	0,0
33	13,4	13,6	0,0	0,0	0,0	0,0
33	9,0	10,4	11,6	19,0	0,0	0,0
33	6,2	9,8	22,4	27,4	31,8	0,0
33	8,6	10,6	15,2	0,0	0,0	0,0
33	5,4	8,0	16,2	23,0	0,0	0,0
33	6,8	9,6	17,0	21,0	28,2	36,0
34	11,7	15,8	0,0	0,0	0,0	0,0
34	12,0	14,0	0,0	0,0	0,0	0,0
34	22,0	22,0	31,4	0,0	0,0	0,0
34	10,0	14,8	0,0	0,0	0,0	0,0
34	5,6	9,0	19,4	33,0	37,2	0,0
34	19,2	25,0	34,4	36,0	0,0	0,0
34	9,0	13,6	0,0	0,0	0,0	0,0
34	15,0	24,0	50,8	52,4	72,6	92,8
35	11,0	14,2	0,0	0,0	0,0	0,0
35	12,2	18,6	0,0	0,0	0,0	0,0
35	14,6	21,4	35,0	50,0	68,8	108,6
35	9,2	14,0	28,0	35,0	50,6	0,0
37	25,0	32,0	33,6	0,0	0,0	0,0
37	9,8	12,0	0,0	0,0	0,0	0,0
37	18,0	20,8	22,4	0,0	0,0	0,0
37	9,6	13,0	20,0	0,0	0,0	0,0
37	14,0	16,4	18,6	0,0	0,0	0,0
37	6,2	9,0	16,0	28,0	39,8	48,8
38	13,2	16,0	20,0	0,0	0,0	0,0
38	12,0	16,2	26,4	27,0	0,0	0,0

38	9,2	13,0	24,0	0,0	0,0	0,0
38	4,0	6,0	12,6	22,4	40,6	42,0
39	10,0	15,4	0,0	0,0	0,0	0,0
39	18,2	24,8	0,0	0,0	0,0	0,0
39	14,4	19,4	0,0	0,0	0,0	0,0
39	11,0	16,0	0,0	0,0	0,0	0,0
39	9,6	14,8	0,0	0,0	0,0	0,0
39	16,0	24,4	0,0	0,0	0,0	0,0
39	13,8	16,0	35,4	45,0	61,4	61,8
39	12,0	15,0	0,0	0,0	0,0	0,0
39	18,4	23,0	28,8	31,4	47,0	0,0
40	8,0	14,0	0,0	0,0	0,0	0,0
40	11,6	16,8	26,4	0,0	0,0	0,0
40	4,4	7,0	11,8	19,2	30,4	43,6
40	15,8	22,6	33,0	45,0	0,0	0,0
40		11,0	24,2		0,0	
40	8,6 24,0	31,4	34,8	0,0 41,6		0,0
40	10,4	13,6	20,4	0,0	0,0	0,0
40	13,0	16,0	19,8			
41	5,8	10,6	21,2	0,0 28,4	0,0	0,0
41	9,4	14,6	0,0	0,0	0,0	0,0
41	9,8	12,0	16,6	30,0	43,0	0,0
41	10,8	15,2	26,0	37,8	59,4	79,4
47	5,8	9,0	18,0	33,0	58,4	98,4
47	8,2	12,6	20,6	0,0	0,0	0,0
47	16,0	0,0	0,0	0,0	0,0	0,0
47	15,2	20,0	27,6	27,6	54,8	0,0
47	12,0	16,0	0,0	0,0	0,0	0,0
47	14,0	19,6	24,0	0,0	0,0	0,0
47	15,6	24,0	38,6	68,6	96,0	117,6
47	15,4	24,4	37,0	0,0	0,0	0,0
47	13,0	20,0	33,0	46,8	70,0	0,0
48	14,6	18,0	34,0	0,0	0,0	0,0
48	9,6	13,0	0,0	0,0	0,0	0,0
48	20,6	28,6	30,6	35,8	66,4	67,0
48	11,0	17,2	23,6	0,0	0,0	0,0
49	19,0	27,4	38,0	43,4	0,0	0,0
49	20,0	29,4	52,4	57,0	57,0	75,4
49	23,0	32,0	51,2	55,2	0,0	0,0
49	25,6	0,0	0,0	0,0	0,0	0,0
49	17,0	24,4	36,8	0,0	0,0	0,0
49	9,6	13,0	0,0	0,0	0,0	0,0
49	10,0	15,8	21,2	0,0	0,0	0,0
50	11,6	0,0	0,0	0,0	0,0	0,0
50	25,0	31,8	0,0	0,0	0,0	0,0
50	12,6	19,0	34,2	0,0	0,0	0,0
50	13,0	20,0	38,0	43,8	63,0	74,0
50	5,8	10,0	20,0	37,0	43,0	54,6
52	0.5	0,0	0,0	0,0	0,0	0,0
52	8,5					
32	9,0	11,6	0,0	0,0	0,0	0,0
52		11,6 19,0	0,0 27,8	0,0 50,4	0,0 53,4	0,0 59,0
	9,0					

53	9,6	17,0	45,0	51,0	57,8	76,0
53	7,6	11,2	0,0	0,0	0,0	0,0
53	5,6	9,0	17,4	33,2	49,0	53,0
53	24,0	34,6	42,0	42,6	0,0	0,0
53	9,0	0,0	0,0	0,0	0,0	0,0
53	10,6	16,0	0,0	0,0	0,0	0,0
54	9,6	15,6	32,4	57,6	67,6	97,2
54	26,0	36,8	49,0	59,0	64,6	-20,0
54	8,0	0,0	0,0	0,0	0,0	0,0
54	31,0	46,0	72,5	74,2	0,0	0,0
54	30,0	34,0	35,4	0,0	0,0	0,0
54	14,0	18,0	0,0	0,0	0,0	0,0
55	17,2	31,0	34,4	51,6	0,0	0,0
55	24,8	25,4	0,0	0,0	0,0	0,0
55	24,4	32,5	0,0	0,0	0,0	0,0
55	13,0	18,0	0,0	0,0	0,0	0,0
55	11,6	16,4	27,0	35,0	0,0	0,0
56	9,8	17,4	0,0	0,0	0,0	0,0
56	12,0	19,0	35,0	0,0	0,0	0,0
56	4,2	7,0	14,0	27,0	48,8	76,2
56	12,4	17,2	20,2	0,0	0,0	0,0
56	10,6	14,8	0,0	0,0	0,0	0,0
56	11,4	0,0	0,0	0,0	0,0	0,0
56	27,0	34,4	41,4	44,0	0,0	0,0
56	6,4	11,0	26,0	33,4	40,4	71,6
57	15,6	0,0	0,0	0,0	0,0	0,0
57	25,0	32,2	39,0	50,0	67,4	81,8
57	9,6	15,0	30,6	0,0	0,0	0,0
57	7,6	11,8	0,0	0,0	0,0	0,0
57	6,2	10,0	0,0	0,0	0,0	0,0
57	7,4	12,6	0,0	0,0	0,0	0,0
58	8,8	12,0	0,0	0,0	0,0	0,0
58	12,0	16,0	20,0	0,0	0,0	0,0
58	8,6	11,6	0,0	0,0	0,0	0,0
58	8,4	14,0	32,6	34,0	0,0	0,0
58	21,0	0,0	0,0	0,0	0,0	0,0
58	9,6	15,0	30,0	35,0	61,0	84,0
58	10,8	17,4	0,0	0,0	0,0	0,0
59	20,0	25,0	26,6	0,0	0,0	0,0
59	18,2	23,0	27,6	0,0	0,0	0,0
59	8,4	10,8	0,0	0,0	0,0	0,0
59	24,0	32,0	43,2	43,4	0,0	0,0
59	6,4	9,0	14,0	26,8	39,0	61,0
61	7,2	11,0	23,2	0,0	0,0	0,0
61	25,0	33,6	0,0	0,0	0,0	0,0
61	8,8	11,6	0,0	0,0	0,0	0,0
61	42,0	75,7	79,2	0,0	0,0	0,0
61	0,0	0,0	0,0	0,0	0,0	109,6
61	11,0	18,0	0,0	0,0	0,0	0,0
61	9,8	15,0	27,0	30,6	45,8	0,0
61	10,0	16,2	0,0	0,0	0,0	0,0
62	5,0	0,0	0,0	0,0	0,0	0,0
62	15,0	22,8	27,0	27,8	33,8	0,0

62	6,8	9,6	18,6	33,2	40,8	0,0
62	7,4	10,6	0,0	0,0	0,0	0,0
62	15,0	23,0	44,0	45,6	45,8	0,0
62	5,8	9,6	16,0	30,8	41,2	47,0
63	30,5	34,8	0,0	0,0	0,0	0,0
63	8,2	13,8	27,6	0,0	0,0	0,0
63	13,6	0,0	0,0	0,0	0,0	0,0
63	23,0	23,2	43,0	0,0	0,0	0,0
63	33,8	34,4	0,0	0,0	0,0	0,0
63	15,6	21,6	30,6	39,2	40,4	52,8
64	10,6	18,6	0,0	0,0	0,0	0,0
64	42,8	49,4	53,0	0,0	0,0	0,0
64	10,2	0,0	0,0	0,0	0,0	0,0
64	8,2	11,0	0,0	0,0	0,0	0,0
64	9,8	15,0	0,0	0,0	0,0	0,0
64	5,8	9,6	24,0	40,0	51,6	68,0
65	15,0	19,8	23,6	40,4	56,2	98,2
65	22,4	22,4	27,0	38,2	59,0	75,8
65	14,4	0,0	0,0	0,0	0,0	0,0
65	14,0	36,0	0,0	0,0	0,0	0,0
65	15,0	23,0	0,0	0,0	0,0	0,0
65	33,0	49,4	66,2	68,0	90,2	0,0
65	9,6	16,6	0,0	0,0	0,0	0,0
65	10,8	16,2	30,6	48,0	0,0	0,0
65	16,0	18,2	22,8	0,0	0,0	0,0
66	17,2	26,0	0,0	0,0	0,0	0,0
66	20,0	29,0	41,2	0,0	0,0	0,0
66	26,0	32,0	39,2	42,4	44,8	0,0
66	24,8	31,4	38,0	0,0	0,0	0,0
66	10,6	16,4	0,0	0,0	0,0	0,0
66	11,0	18,0	0,0	0,0	0,0	0,0
67	10,0	14,4	22,0	25,0	28,2	52,0
67	18,4	26,2	0,0	0,0	0,0	0,0
67	24,0	33,0	36,5	0,0	0,0	0,0
67	18,0	0,0	0,0	0,0	0,0	0,0
67	9,6	16,0	0,0	0,0	0,0	0,0
68	12,0	21,0	0,0	0,0	0,0	0,0
68	30,0	30,0	30,2	0,0	0,0	0,0
68	10,8	18,0	0,0	0,0	0,0	0,0
68	11,0	18,4	0,0	0,0	0,0	0,0
68	20,0	20,0	28,4	46,0	0,0	0,0
68	6,4	10,0	20,4	37,4	42,0	51,4
68	12,0	18,4	28,4	0,0	0,0	0,0
69	6,4	9,8	19,4	38,0	48,4	0,0
69	11,6	19,6	41,4	65,6	84,6	92,4
69	12,8	0,0	0,0	0,0	0,0	0,0
69	11,0	17,2	0,0	0,0	0,0	0,0
69	14,0	22,6	0,0	0,0	0,0	0,0
69	16,0	0,0	0,0	0,0	0,0	0,0
69	12,4	0,0	0,0	0,0	0,0	0,0

71 2,6 4,2 9,2 15,4 17,0 34,0 71 2,8 4,8 10,4 20,8 28,8 0,0 71 2,0 3,2 7,0 9,6 12,0 15,0 71 10,0 16,6 27,0 31,2 0,0 0,0 71 49,6 70,4 84,2 0,0 0,0 0,0 71 49,6 70,4 84,2 0,0 0,0 0,0 71 8,6 11,8 16,6 19,2 35,4 39,8 71 10,0 14,6 20,4 26,0 32,6 42,8 71 4,2 6,4 12,6 20,8 21,8 29,6 72 4,6 6,8 13,2 22,8 36,0 39,8 72 2,0 3,2 6,8 11,2 11,6 21,6 20,0 26,0 39,8 72 2,4 6,2 11,2 11,4	69	30,0	54,0	65,2	65,4	0,0	0,0
71 2,8 4,8 10,4 20,8 28,8 0,0 71 2,0 3,2 7,0 9,6 12,0 15,0 71 10,0 16,6 27,0 31,2 0,0 0,0 71 33,6 55,0 0,0 0,0 0,0 0,0 71 49,6 70,4 84,2 0,0 0,0 0,0 71 21,0 26,2 0,0 0,0 0,0 0,0 71 8,6 11,8 16,6 19,2 35,4 39,8 71 10,0 14,6 20,4 26,0 32,6 42,8 71 4,2 6,4 12,6 20,8 21,8 29,6 72 4,6 6,8 13,2 22,8 36,0 39,8 72 2,4 6,6 11,2 11,4 16,8 23,6 72 2,4 0,0 0,0 0,0 0,0 0,0 72 </th <th>71</th> <th>2,6</th> <th>4,2</th> <th>9,2</th> <th>15,4</th> <th>17,0</th> <th>34,0</th>	71	2,6	4,2	9,2	15,4	17,0	34,0
71 2,0 3,2 7,0 9,6 12,0 15,0 71 10,0 16,6 27,0 31,2 0,0 0,0 71 33,6 55,0 0,0 0,0 0,0 0,0 71 21,0 26,2 0,0 0,0 0,0 0,0 71 21,0 26,2 0,0 0,0 0,0 0,0 71 8,6 11,8 16,6 19,2 35,4 39,8 71 10,0 14,6 20,4 26,0 32,6 42,8 71 4,2 6,4 12,6 20,8 21,8 29,6 72 4,6 6,8 13,2 22,8 36,0 39,8 72 2,0 3,2 6,8 11,2 17,6 28,4 72 7,4 9,2 11,2 11,4 16,8 23,6 72 24,8 0,0 0,0 0,0 0,0 0,0 72 </th <th>71</th> <th>2,8</th> <th>4,8</th> <th>10,4</th> <th>20,8</th> <th>28,8</th> <th></th>	71	2,8	4,8	10,4	20,8	28,8	
71	71	2,0	3,2	7,0	9,6	12,0	15,0
71	71	10,0	16,6	27,0	31,2	0,0	0,0
71	71	33,6	55,0	0,0	0,0	0,0	0,0
71 8,6 11,8 16,6 19,2 35,4 39,8 71 10,0 14,6 20,4 26,0 32,6 42,8 71 4,2 6,4 12,6 20,8 21,8 29,6 72 4,6 6,8 13,2 22,8 36,0 39,8 72 2,0 3,2 6,8 11,2 17,6 28,4 72 7,4 9,2 11,2 11,4 16,8 23,6 72 24,8 0,0 0,0 0,0 0,0 0,0 72 36,4 55,4 61,8 0,0 0,0 0,0 72 36,6 55,4 61,8 0,0 0,0 0,0 72 30,6 37,0 57,6 67,2 71,4 72,4 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 <	71	49,6	70,4	84,2	0,0	0,0	0,0
71 10,0 14,6 20,4 26,0 32,6 42,8 71 4,2 6,4 12,6 20,8 21,8 29,6 72 4,6 6,8 13,2 22,8 36,0 39,8 72 2,0 3,2 6,8 11,2 17,6 28,4 72 7,4 9,2 11,2 11,4 16,8 23,6 72 24,8 0,0 0,0 0,0 0,0 0,0 0,0 72 27,8 36,8 0,0 0,0 0,0 0,0 72 36,4 55,4 61,8 0,0 0,0 0,0 72 36,8 54,2 74,8 81,6 0,0 0,0 72 36,6 37,0 57,6 67,2 71,4 72,4 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4	71	21,0	26,2	0,0	0,0	0,0	0,0
71 4,2 6,4 12,6 20,8 21,8 29,6 72 4,6 6,8 13,2 22,8 36,0 39,8 72 2,0 3,2 6,8 11,2 17,6 28,4 72 7,4 9,2 11,2 11,4 16,8 23,6 72 24,8 0,0 0,0 0,0 0,0 0,0 72 36,4 55,4 61,8 0,0 0,0 0,0 72 36,4 55,4 61,8 0,0 0,0 0,0 72 36,6 37,0 57,6 67,2 71,4 72,4 72 30,6 37,0 57,6 67,2 71,4 72,4 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 4,6 6,2 12,0 0,0 0,0 0,0 7	71	8,6	11,8	16,6	19,2	35,4	39,8
72 4,6 6,8 13,2 22,8 36,0 39,8 72 2,0 3,2 6,8 11,2 17,6 28,4 72 7,4 9,2 11,2 11,4 16,8 23,6 72 24,8 0,0 0,0 0,0 0,0 0,0 72 27,8 36,8 0,0 0,0 0,0 0,0 72 36,4 55,4 61,8 0,0 0,0 0,0 72 35,8 54,2 74,8 81,6 0,0 0,0 72 36,6 37,0 57,6 67,2 71,4 72,4 72 3,6 37,0 57,6 67,2 71,4 72,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 4,6 6,2 12,0 0,0 0,0 0,0 73 </th <th>71</th> <th>10,0</th> <th>14,6</th> <th>20,4</th> <th>26,0</th> <th>32,6</th> <th>42,8</th>	71	10,0	14,6	20,4	26,0	32,6	42,8
72 2,0 3,2 6,8 11,2 17,6 28,4 72 7,4 9,2 11,2 11,4 16,8 23,6 72 24,8 0,0 0,0 0,0 0,0 0,0 0,0 72 27,8 36,8 0,0 0,0 0,0 0,0 72 36,4 55,4 61,8 0,0 0,0 0,0 72 36,8 54,2 74,8 81,6 0,0 0,0 72 36,6 37,0 57,6 67,2 71,4 72,4 72 5,0 6,8 17,2 26,6 50,2 67,2 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 <t< th=""><th>71</th><th>4,2</th><th>6,4</th><th>12,6</th><th>20,8</th><th>21,8</th><th>29,6</th></t<>	71	4,2	6,4	12,6	20,8	21,8	29,6
72 7,4 9,2 11,2 11,4 16,8 23,6 72 24,8 0,0 0,0 0,0 0,0 0,0 0,0 72 27,8 36,8 0,0 0,0 0,0 0,0 72 36,4 55,4 61,8 0,0 0,0 0,0 72 36,8 54,2 74,8 81,6 0,0 0,0 72 36,8 54,2 74,8 81,6 0,0 0,0 72 30,6 37,0 57,6 67,2 71,4 72,4 72 5,0 6,8 17,2 26,6 50,2 67,2 73 3,4 4,8 9,0 10,4 12,6 16,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 <tr< th=""><th>72</th><th>4,6</th><th>6,8</th><th>13,2</th><th>22,8</th><th>36,0</th><th>39,8</th></tr<>	72	4,6	6,8	13,2	22,8	36,0	39,8
72 24,8 0,0 0,0 0,0 0,0 0,0 0,0 72 27,8 36,8 0,0 0,0 0,0 0,0 72 36,4 55,4 61,8 0,0 0,0 0,0 72 35,8 54,2 74,8 81,6 0,0 0,0 72 30,6 37,0 57,6 67,2 71,4 72,4 72 5,0 6,8 17,2 26,6 50,2 67,2 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0	72	2,0	3,2	6,8	11,2	17,6	28,4
72 27,8 36,8 0,0 0,0 0,0 0,0 72 36,4 55,4 61,8 0,0 0,0 0,0 72 35,8 54,2 74,8 81,6 0,0 0,0 72 30,6 37,0 57,6 67,2 71,4 72,4 72 5,0 6,8 17,2 26,6 50,2 67,2 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,6 10,6 24,8 38,0 38,6 41,4 73 6,4 10,6 24,8 38,0 38,6 41,4 73 31,4 34,8 37,4 0,0 0,0 0,0 73	72	7,4	9,2	11,2	11,4	16,8	23,6
72 36,4 55,4 61,8 0,0 0,0 0,0 72 35,8 54,2 74,8 81,6 0,0 0,0 72 30,6 37,0 57,6 67,2 71,4 72,4 72 5,0 6,8 17,2 26,6 50,2 67,2 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,4 10,6 24,8 38,0 38,6 41,4 73 6,4 10,6 24,8 38,0 38,6 41,4 73 31,4 34,8 37,4 0,0 0,0 0,0 7	72	24,8	0,0	0,0	0,0	0,0	0,0
72 35,8 54,2 74,8 81,6 0,0 0,0 72 30,6 37,0 57,6 67,2 71,4 72,4 72 5,0 6,8 17,2 26,6 50,2 67,2 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 2,0 3,2 7,4 14,0 20,6 21,6 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 19,0 0,0 0,0 0,0 0,0 0,0 73 19,0 0,0 0,0 0,0 0,0 0,0 73	72	27,8	36,8	0,0	0,0	0,0	0,0
72 30,6 37,0 57,6 67,2 71,4 72,4 72 5,0 6,8 17,2 26,6 50,2 67,2 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 2,0 3,2 7,4 14,0 20,6 21,6 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,6 10,6 24,8 38,0 38,6 41,4 73 6,4 10,6 24,8 38,0 38,6 41,4 73 6,2 9,2 17,2 0,0 0,0 0,0 73 19,0 0,0 0,0 0,0 0,0 0,0 73 <th>72</th> <th>36,4</th> <th>55,4</th> <th>61,8</th> <th>0,0</th> <th>0,0</th> <th>0,0</th>	72	36,4	55,4	61,8	0,0	0,0	0,0
72 5,0 6,8 17,2 26,6 50,2 67,2 72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 2,0 3,2 7,4 14,0 20,6 21,6 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 6,4 10,6 24,8 38,0 38,6 41,4 73 6,2 9,2 17,2 0,0 0,0 0,0 73 11,0 0,0 0,0 0,0 0,0 0,0 73 19,0 0,0 0,0 0,0 0,0 0,0 73 19,0 0,0 0,0 0,0 0,0 0,0 73	72	35,8	54,2	74,8	81,6	0,0	0,0
72 4,4 6,2 10,6 20,0 26,0 49,4 73 3,4 4,8 9,0 10,4 12,6 16,4 73 2,0 3,2 7,4 14,0 20,6 21,6 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 6,4 10,6 24,8 38,0 38,6 41,4 73 6,4 10,6 24,8 38,0 38,6 41,4 73 6,2 9,2 17,2 0,0 0,0 0,0 73 31,4 34,8 37,4 0,0 0,0 0,0 73 19,0 0,0 0,0 0,0 0,0 0,0 73 7,0 11,0 22,8 27,0 0,0 0,0 73 7,0 11,0 22,8 27,0 0,0 0,0 74	72	30,6	37,0	57,6	67,2	71,4	72,4
73 3,4 4,8 9,0 10,4 12,6 16,4 73 2,0 3,2 7,4 14,0 20,6 21,6 73 4,8 7,8 17,0 24,2 0,0 0,0 73 4,0 6,2 12,0 0,0 0,0 0,0 73 6,4 10,6 24,8 38,0 38,6 41,4 73 6,2 9,2 17,2 0,0 0,0 0,0 73 31,4 34,8 37,4 0,0 0,0 0,0 73 19,0 0,0 0,0 0,0 0,0 0,0 73 19,0 0,0 0,0 0,0 0,0 0,0 73 7,0 11,0 22,8 27,0 0,0 0,0 73 7,0 11,0 22,8 27,0 0,0 0,0 74 7,2 12,0 28,8 41,2 51,0 0,0 74	72	5,0	6,8	17,2	26,6	50,2	67,2
73	72	4,4	6,2	10,6	20,0	26,0	49,4
73	73	3,4	4,8	9,0	10,4	12,6	16,4
73	73	2,0	3,2	7,4	14,0	20,6	21,6
73	73	4,8	7,8	17,0	24,2	0,0	0,0
73	73	4,0	6,2	12,0	0,0	0,0	0,0
73	73	6,4	10,6	24,8	38,0	38,6	41,4
73	73	6,2	9,2	17,2	0,0	0,0	0,0
73	73	31,4	34,8	37,4	0,0	0,0	0,0
73	73	19,0	0,0	0,0	0,0	0,0	0,0
73	73	10,2	17,4	24,8	37,6	48,4	50,0
74 7,2 12,0 28,8 41,2 51,0 0,0 74 7,0 9,4 15,2 25,2 27,6 28,2 74 2,6 4,4 10,2 21,0 23,6 34,8 74 7,4 10,8 18,4 24,2 31,6 39,8 74 14,6 16,4 19,8 24,4 33,0 0,0 74 21,0 23,8 0,0 0,0 0,0 0,0 74 14,8 15,8 33,8 46,0 55,4 60,4 74 19,4 36,0 50,0 59,6 61,8 64,8 74 19,4 36,0 50,0 59,6 61,8 64,8 74 2,0 3,2 7,8 11,8 17,6 21,8 75 3,8 7,2 17,0 35,2 42,6 45,2 75 13,6 16,6 17,2 22,8 23,8 33,6	73	7,0	11,0	22,8	27,0	0,0	0,0
74	73	4,6	8,6	16,2	0,0	0,0	0,0
74	74	7,2	12,0	28,8	41,2	51,0	0,0
74 7,4 10,8 18,4 24,2 31,6 39,8 74 14,6 16,4 19,8 24,4 33,0 0,0 74 21,0 23,8 0,0 0,0 0,0 0,0 74 14,8 15,8 33,8 46,0 55,4 60,4 74 19,4 36,0 50,0 59,6 61,8 64,8 74 2,0 3,2 7,8 11,8 17,6 21,8 75 3,8 7,2 17,0 35,2 42,6 45,2 75 13,6 16,6 17,2 22,8 23,8 33,6 75 4,6 5,8 8,4 10,8 11,2 23,0 75 14,2 0,0 0,0 0,0 0,0 0,0 75 14,6 5,8 8,4 10,8 11,2 23,0 75 14,6 24,4 0,0 0,0 0,0 0,0	74	7,0	9,4	15,2	25,2	27,6	28,2
74 14,6 16,4 19,8 24,4 33,0 0,0 74 21,0 23,8 0,0 0,0 0,0 0,0 74 14,8 15,8 33,8 46,0 55,4 60,4 74 19,4 36,0 50,0 59,6 61,8 64,8 74 2,0 3,2 7,8 11,8 17,6 21,8 75 3,8 7,2 17,0 35,2 42,6 45,2 75 13,6 16,6 17,2 22,8 23,8 33,6 75 4,6 5,8 8,4 10,8 11,2 23,0 75 14,2 0,0 0,0 0,0 0,0 0,0 75 14,6 24,4 0,0 0,0 0,0 0,0 75 14,6 24,4 0,0 0,0 0,0 0,0 75 15,4 18,8 0,0 0,0 0,0 0,0 7	74	2,6	4,4	10,2	21,0	23,6	34,8
74 21,0 23,8 0,0 0,0 0,0 0,0 74 14,8 15,8 33,8 46,0 55,4 60,4 74 19,4 36,0 50,0 59,6 61,8 64,8 74 2,0 3,2 7,8 11,8 17,6 21,8 75 3,8 7,2 17,0 35,2 42,6 45,2 75 13,6 16,6 17,2 22,8 23,8 33,6 75 4,6 5,8 8,4 10,8 11,2 23,0 75 14,2 0,0 0,0 0,0 0,0 0,0 75 14,6 24,4 0,0 0,0 0,0 0,0 75 14,6 24,4 0,0 0,0 0,0 0,0 75 15,4 18,8 0,0 0,0 0,0 0,0 75 15,4 18,8 0,0 0,0 0,0 0,0 75 </th <th>74</th> <th>7,4</th> <th>10,8</th> <th>18,4</th> <th>24,2</th> <th>31,6</th> <th>39,8</th>	74	7,4	10,8	18,4	24,2	31,6	39,8
74 14,8 15,8 33,8 46,0 55,4 60,4 74 19,4 36,0 50,0 59,6 61,8 64,8 74 2,0 3,2 7,8 11,8 17,6 21,8 75 3,8 7,2 17,0 35,2 42,6 45,2 75 13,6 16,6 17,2 22,8 23,8 33,6 75 4,6 5,8 8,4 10,8 11,2 23,0 75 14,2 0,0 0,0 0,0 0,0 0,0 75 14,6 20,6 29,0 0,0 0,0 0,0 75 14,6 24,4 0,0 0,0 0,0 0,0 75 14,6 24,4 0,0 0,0 0,0 0,0 75 15,4 18,8 0,0 0,0 0,0 0,0 75 13,4 18,4 0,0 0,0 0,0 0,0		14,6	16,4	19,8	24,4	33,0	0,0
74 19,4 36,0 50,0 59,6 61,8 64,8 74 2,0 3,2 7,8 11,8 17,6 21,8 75 3,8 7,2 17,0 35,2 42,6 45,2 75 13,6 16,6 17,2 22,8 23,8 33,6 75 4,6 5,8 8,4 10,8 11,2 23,0 75 14,2 0,0 0,0 0,0 0,0 0,0 75 16,0 20,6 29,0 0,0 0,0 0,0 75 14,6 24,4 0,0 0,0 0,0 0,0 75 14,6 24,4 0,0 0,0 0,0 0,0 75 15,4 18,8 0,0 0,0 0,0 0,0 75 13,4 18,4 0,0 0,0 0,0 0,0	74	21,0	23,8	0,0	0,0	0,0	0,0
74	74	14,8	15,8	33,8	46,0	55,4	60,4
75		19,4	36,0	50,0	59,6	61,8	64,8
75		2,0	3,2	7,8	11,8	17,6	21,8
75		3,8	7,2	17,0	35,2	42,6	45,2
75		13,6	16,6	17,2	22,8	23,8	33,6
75		4,6	5,8	8,4	10,8	11,2	23,0
75		14,2	0,0	0,0	0,0	0,0	0,0
75 15,4 18,8 0,0 0,0 0,0 0,0 0,0 75 13,4 18,4 0,0 0,0 0,0 0,0 0,0	_	16,0	20,6	29,0	0,0	0,0	0,0
75 13,4 18,4 0,0 0,0 0,0 0,0 0,0	_	14,6	24,4	0,0	0,0	0,0	0,0
75		15,4	18,8	0,0	0,0	0,0	0,0
11 ,0 16,4 30,2 38,2 56,8 95,8		13,4	18,4	0,0	0,0	0,0	0,0
	75	11,0	16,4	30,2	38,2	56,8	95,8

76	6,0	6,8	7,6	10,4	18,8	0,0
76	4,0	5,4	7,2	11,2	19,8	24,0
76	5,0	8,2	20,8	32,6	35,4	60,2
76	2,6	4,2	7,8	13,0	0,0	0,0
76	14,4	17,6	27,4	34,2	51,0	52,6
76	15,0	16,8	0,0	0,0	0,0	0,0
76	19,4	0,0	0,0	0,0	0,0	0,0
76	42,8	51,6	0,0	0,0	0,0	0,0
76	23,0	37,4	50,3	0,0	0,0	0,0
76	16,8	23,2	48,0	67,8	74,6	85,6
76	19,4	0,0	0,0	0,0	0,0	0,0
77	9,0	13,6	22,8	27,4	41,2	0,0
77	11,0	18,2	41,8	54,4	55,4	55,8
77	23,2	0,0	0,0	0,0	0,0	0,0
77	25,2	41,0	0,0	0,0	0,0	0,0
77	15,5	23,2	39,2	48,6	53,0	59,0
77	17,4	0,0	0,0	0,0	0,0	0,0
77	25,4	0,0	0,0	0,0	0,0	0,0
77	4,4	6,8	14,2	24,0	34,8	42,6
77	6,2	9,8	18,8	24,8	38,6	38,8
77	5,2	8,0	15,2	23,6	28,0	29,2
80	4,6	7,2	14,6	28,6	34,6	44,6
80	5,6	9,4	13,0	16,2	25,4	31,8
80	11,4	12,6	0,0	0,0	0,0	0,0
80	34,8	39,6	45,6	45,6	61,6	0,0
80	16,0	0,0	0,0	0,0	0,0	0,0
80	15,0	20,4	32,6	34,8	42,0	52,3
80	29,8	36,0	53,6	60,8	77,0	89,2
81	6,8	10,2	19,8	0,0	0,0	0,0
81	7,2	8,6	0,0	0,0	0,0	0,0
81	18,8	19,6	0,0	0,0	0,0	0,0
81	5,0	8,0	17,6	22,4	27,0	34,6
81	2,0	3,0	5,8	7,2	13,4	20,4
81	6,0	11,4	19,0	23,4	28,0	32,4
81	6,8	11,0	16,8	17,2	18,4	27,6
81	1,0	2,8	5,0	8,4	12,2	19,2
82	3,6	6,2	15,8	21,6	39,0	0,0
82	17,4	20,0	0,0	0,0	0,0	0,0
82	12,4	0,0	0,0	0,0	0,0	0,0
82	15,0	18,8	20,6	22,8	33,2	45,4
82	15,2	20,8	27,6	46,8	50,0	53,4
82	7,6	11,2	17,6	32,0	0,0	0,0
83	2,6	4,0	10,0	16,8	25,8	35,6
83	2,8	4,2	10,0	14,2	21,2	34,0
83	7,0	7,6	0,0	0,0	0,0	0,0
83	4,0	6,0	0,0	0,0	0,0	0,0
83	8,6	11,6	16,0	0,0	0,0	0,0

2) Procediamo ora alla determinazione degli "eventi critici", ovvero i valori delle max altezze di precipitazione annue registrate in mezz'ora, un'ora, tre ore, sei ore, dodici ore e ventiquattro ore consecutive. Ovviamente, poiché si considerano piogge continue, le altezze di pioggia per ciascuna durata non debbono risultare inferiori ai valori corrispondenti a durate inferiori. Nella tabella seguente evidenziamo quindi le massime altezze di precipitazione annue misurate relativamente alle durate prefissate:

				Prom		
ore Anno	1/2	1	3	6	12	24
28	24	31,6	31,6	31,6	37	53,6
29	21	27	33,2	37,4	49,2	49,4
30	21,8	25,4	29,5	44,8	44,8	44,8
31	25	36	49	56,7	57,8	68,8
32	25	36,4	49,2	49,8	50	51,8
33	15	15,2	22,4	27,4	31,8	36
34	22	25	50,8	52,4	72,6	92,8
35	14,6	21,4	35	50	68,8	108,6
37	25	32	33,6	33,6	39,8	48,8
38	13,2	16,2	26,4	27	40,6	42
39	18,4	24,8	35,4	45	61,4	61,8
40	24	31,4	34,8	45	45	45
41	10,8	15,2	26	37,8	59,4	79,4
47	16	24,4	38,6	68,6	96	117,6
48	20,6	28,6	34	35,8	66,4	67
49	25,6	32	52,4	57	57	75,4
50	25	31,8	38	43,8	63	74
52	19	20	27,8	50,4	53,4	59
53	24	34,6	45	51	57,8	76
54	31	46	72,5	74,2	74,2	97,2
55	24,8	32,5	34,4	51,6	51,6	51,6
56	27	34,4	41,4	44	48,8	76,2

57	25	32,2	39	50	67,4	81,8
58	21	21	32,6	35	61	84
59	24	32	43,2	43,4	43,4	61
61	42	75,7	79,2	79,2	79,2	109,6
62	15	23	44	45,6	45,8	47
63	33,8	34,8	43	43	43	52,8
64	42,8	49,4	53	53	53	68
65	33	49,4	66,2	68	90,2	98,2
66	26	32	41,2	42,4	44,8	44,8
67	24	33	36,5	36,5	36,5	52
68	30	30	30,2	46	46	51,4
69	30	54	65,2	65,6	84,6	92,4
71	49,6	70,4	84,2	84,2	84,2	84,2
72	36,4	55,4	74,8	81,6	81,6	81,6
73	31,4	34,8	37,4	38	48,4	50
74	21	36	50	59,6	61,8	64,8
75	16	24,4	30,2	38,2	56,8	95,8
76	42,8	51,6	51,6	67,8	74,6	85,6
77	25,4	41	41,8	54,4	55,4	59
80	34,8	39,6	53,6	60,8	77	89,2
81	18,8	19,6	19,8	23,4	28	34,6
82	17,4	20,8	27,6	46,8	50	53,4
83	8,6	11,6	16	16,8	25,8	35,6

Abbiamo così ottenuto una tabella costituita da 45 righe (gli N anni di osservazione) e 6 colonne (le M durate considerate).

3) Volendo trattare gli eventi più significativi, si toglie la dipendenza dall'anno di riferimento (in cui si sono verificati i vari valori osservati) ordinando i valori di precipitazione di ciascuna colonna in ordine decrescente:

ore	1/2	1	3	6	12	24
Caso CRITICO						
1	49,6	75,7	84,2	84,2	96	117,6
2	42,8	70,4	79,2	81,6	90,2	109,6
3	42,8	55,4	74,8	79,2	84,6	108,6
4	42	54	72,5	74,2	84,2	98,2
5	36,4	51,6	66,2	68,6	81,6	97,2
6	34,8	49,4	65,2	68	79,2	95,8
7	33,8	49,4	53,6	67,8	77	92,8
8	33	46	53	65,6	74,6	92,4
9	31,4	41	52,4	60,8	74,2	89,2
10	31	39,6	51,6	59,6	72,6	85,6
11	30	36,4	50,8	57	68,8	84,2
12	30	36	50	56,7	67,4	84
13	27	36	49,2	54,4	66,4	81,8
14	26	34,8	49	53	63	81,6
15	25,6	34,8	45	52,4	61,8	79,4
16	25,4	34,6	44	51,6	61,4	76,2

17	25	34,4	43,2	51	61	76
18	25	33	43	50,4	59,4	75,4
19	25	32,5	41,8	50	57,8	74
20	25	32,2	41,4	50	57,8	68,8
21	25	32	41,2	49,8	57	68
22	24,8	32	39	46,8	56,8	67
23	24	32	38,6	46	55,4	64,8
24	24	32	38	45,6	53,4	61,8
25	24	31,8	37,4	45	53	61
26	24	31,6	36,5	45	51,6	59
27	24	31,4	35,4	44,8	50	59
28	22	30	35	44	50	53,6
29	21,8	28,6	34,8	43,8	49,2	53,4
30	21	27	34,4	43,4	48,8	52,8
31	21	25,4	34	43	48,4	52
32	21	25	33,6	42,4	46	51,8
33	20,6	24,8	33,2	38,2	45,8	51,6
34	19	24,4	32,6	38	45	51,4

35	18,8	24,4	31,6	37,8	44,8	50
36	18,4	23	30,2	37,4	44,8	49,4
37	17,4	21,4	30,2	36,5	43,4	48,8
38	16	21	29,5	35,8	43	47
39	16	20,8	27,8	35	40,6	45
40	15	20	27,6	33,6	39,8	44,8

41	15	19,6	26,4	31,6	37	44,8
42	14,6	16,2	26	27,4	36,5	42
43	13,2	15,2	22,4	27	31,8	36
44	10,8	15,2	19,8	23,4	28	35,6
45	8,6	11,6	16	16,8	25,8	34,6

Ogni riga sarà dunque costituita da tutti i massimi valori relativi a ½ ora di pioggia, 1 ora, 3 ore, 6 ore, 12 ore e 24 ore (ma questi valori non appartengono tutti allo stesso anno!).

Nota. Ogni riga rappresenta dunque un **caso critico**; pertanto si avranno N casi critici. La prima riga, quella che contiene tutti i massimi valori, rappresenterà il primo caso critico. I numeri delle colonne invece saranno pari a M (numero delle durate esaminate, in questo caso 6).

4) A questo punto possiamo già diagrammare le **curve di caso critico** in termini di intensità di precipitazione $h'(t_i)$:

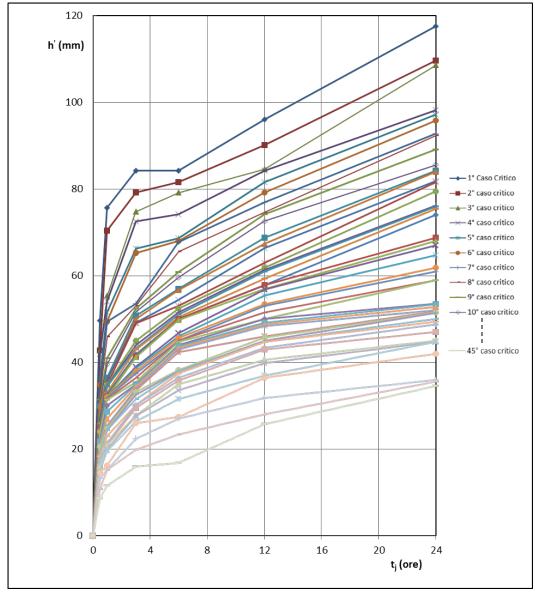


Figura 1 – Curve di caso critico delle altezze di precipitazione di massima intensità registrate.

Di seguito diagrammiamo anche le curve di caso critico in termini di intensità di precipitazione $i'(t_i)$: basterà dividere i valori delle singole altezze per le relative durate.

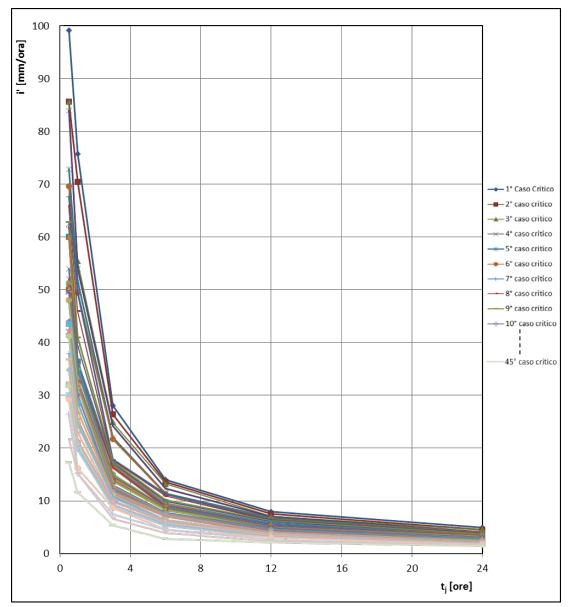


Figura 2 – Curve di caso critico delle intensità delle precipitazioni di massima intensità registrate.

Nota. Come ci si aspettava, l'intensità di precipitazione è tanto maggiore quanto più piccolo è l'intervallo di tempo considerato.

Le curve di caso critico quindi altro non sono che le linee che uniscono i punti rappresentativi dello stesso caso critico per durate diverse.

Le curve così determinate hanno un andamento irregolare che varia notevolmente da caso a caso. È possibile notare però che le intensità medie diminuiscono sempre al crescere dell'intervallo di osservazione, e che le altezze, invece, aumentano con l'ampiezza dell'intervallo.

È importante sottolineare che queste curve non hanno nessuna interpretazione fisica del fenomeno e il loro carattere è meramente empirico.

Nota. È da notare però che per la natura del fenomeno l'intensità di pioggia:

- non tende mai a ∞ per quanto piccolo sia l'intervallo di tempo;
- non tende mai a 0 per quanto lungo si consideri l'intervallo di tempo.

5) Nella pratica può essere utile **regolarizzare gli andamenti** empirici delle curve di cui al punto 4 per mezzo di curve analitiche del tipo:

$$h_i(t_j) = a_i t_j^n$$

le quali, inoltre, possono essere linearizzate passando alla forma logaritmica:

$$\ln h_i(t_j) = \ln a_i + n \ln t_j$$

dove:

pedice i = segna la dipendenza dal caso critico i-esimo.

pedice j = segna la dipendenza dalla durata dell'intervallo, ovvero durata j-esima.

n = coeff. angolare della retta.

 a_i = intercetta.

Nota. La linearizzazione non va fatta curva per curva, questo per evitare che si verifichino intersezioni tra le stesse curve. Un modo per risolvere il problema è quello di imporre a priori il parallelismo tra le rette: si stabilisce che il coeff. angolare n sia il medesimo per tutte le rette e a variare sia solo l'intercetta $\log a_i$.

Nota. In questo modo i parametri per la regolarizzazione delle curve (il valore unico di n e i vari valori a_i , dove il pedice i indica il caso critico d'appartenenza) possono essere determinati applicando il criterio dei minimi quadrati; si perviene così alle seguenti relazioni risolventi:

$$n = \frac{\sum_{i=1}^{N} \sum_{j=1}^{M} \left(\ln t_j - \overline{\ln t_j} \right) \ln h_i(t_j)}{N \sum_{j=1}^{M} \left(\ln t_j - \overline{\ln t_j} \right)^2}$$

$$\ln a_i = \overline{\ln h_i(t_i)} - n \overline{\ln t_i}$$

dove:

 $ln t_i = logaritmo della durata (es: durata 3 ore <math>\rightarrow ln 3 = 1,099$).

 $\overline{\ln t_j} = \frac{\sum_{j=1}^{M} (\ln t_j)}{M}$ media dei logaritmi delle durate.

 $\ln h_i$ = logaritmo delle varie altezze di precipitazione.

 $\overline{\ln h_i} = \frac{\sum_{i=1}^{N} (\ln h_i)}{N}$ media dei logaritmi delle altezze di precipitazione.

Sulla scorta di quanto detto, andiamo ora a determinare il coefficiente angolare n applicando la formula prima scritta:

a) Calcolo del denominatore

Anzitutto calcoliamo la media dei logaritmi naturali delle durate come definita sopra:

$$\overline{\ln t_j} = \frac{\ln(0.5) + \ln(1) + \ln(3) + \ln(6) + \ln(12) + \ln(24)}{6} = 1.310$$

Fatto ciò andiamo a calcolare la somma, elevata al quadrato, delle differenze tra i logaritmi delle singole durate e il logaritmo della durata media, moltiplicando ciò che otteniamo per gli N anni di osservazione:

$$N \sum_{j=1}^{M} (\ln t_j - \overline{\ln t_j})^2 = 45 \cdot [(\ln 0.5 - 1.31)^2 + (\ln 1 - 1.31)^2 + (\ln 3 - 1.31)^2 + (\ln 6 - 1.31)^2 + (\ln 12 - 1.31)^2 + (\ln 24 - 1.31)^2] = 489.398$$

b) Calcolo del numeratore

Nella tabella di cui al punto 3 calcoliamo i logaritmi di tutti i valori delle altezze di precipitazione:

In(t _i)	-0,69315	0	1,098612	1,791759	2,484907	3,178054	
Caso CR (i)	In(h _i) _(tj=1)	In(h _i) _(tj=2)	In(h _i) _(tj=3)	In(h _i) _(tj=4)	In(h _i) _(tj=5)	In(h _i) _(tj=6)	$\Sigma_{j}(\ln(t_{j})-\ln(t_{m}))\log(h_{i})_{(tj)}$
1	3,904	4,327	4,433	4,433	4,564	4,767	1,978
2	3,757	4,254	4,372	4,402	4,502	4,697	2,161
3	3,757	4,015	4,315	4,372	4,438	4,688	2,380
4	3,738	3,989	4,284	4,307	4,433	4,587	2,233
5	3,595	3,944	4,193	4,228	4,402	4,577	2,505
6	3,550	3,900	4,177	4,220	4,372	4,562	2,589
7	3,520	3,900	3,982	4,217	4,344	4,530	2,595
8	3,497	3,829	3,970	4,184	4,312	4,526	2,677
9	3,447	3,714	3,959	4,108	4,307	4,491	2,821
10	3,434	3,679	3,944	4,088	4,285	4,450	2,784
11	3,401	3,595	3,928	4,043	4,231	4,433	2,847
12	3,401	3,584	3,912	4,038	4,211	4,431	2,834
13	3,296	3,584	3,896	3,996	4,196	4,404	2,962
14	3,258	3,550	3,892	3,970	4,143	4,402	3,004
15	3,243	3,550	3,807	3,959	4,124	4,374	2,973
16	3,235	3,544	3,784	3,944	4,117	4,333	2,910
17	3,219	3,538	3,766	3,932	4,111	4,331	2,935
18	3,219	3,497	3,761	3,920	4,084	4,323	2,938
19	3,219	3,481	3,733	3,912	4,057	4,304	2,893
20	3,219	3,472	3,723	3,912	4,057	4,231	2,771
21	3,219	3,466	3,718	3,908	4,043	4,220	2,740
22	3,211	3,466	3,664	3,846	4,040	4,205	2,706
23	3,178	3,466	3,653	3,829	4,015	4,171	2,674
24	3,178	3,466	3,638	3,820	3,978	4,124	2,542
25	3,178	3,459	3,622	3,807	3,970	4,111	2,514
26	3,178	3,453	3,597	3,807	3,944	4,078	2,433
27	3,178	3,447	3,567	3,802	3,912	4,078	2,409
28	3,091	3,401	3,555	3,784	3,912	3,982	2,457 2,511
29	3,082	3,353	3,550	3,780	3,896	3,978	2,629
30 31	3,045 3,045	3,296 3,235	3,538 3,526	3,770 3,761	3,888 3,879	3,967 3,951	2,669
32	3,045	3,219	3,515	3,747	3,829	3,947	2,619
33	3,025	3,211	3,503	3,643	3,824	3,944	2,608
34	2,944	3,195	3,484	3,638	3,807	3,940	2,764
35	2,934	3,195	3,453	3,632	3,802	3,912	2,733
36	2,912	3,135	3,408	3,622	3,802	3,900	2,835
37	2,856	3,063	3,408	3,597	3,770	3,888	2,969
38	2,773	3,045	3,384	3,578	3,761	3,850	3,077
39	2,773	3,035	3,325	3,555	3,704	3,807	2,942
40	2,708	2,996	3,318	3,515	3,684	3,802	3,073
41	2,708	2,976	3,273	3,453	3,611	3,802	2,994
42	2,681	2,785	3,258	3,311	3,597	3,738	3,095
43	2,580	2,721	3,109	3,296	3,459	3,584	2,955
44	2,380	2,721	2,986	3,153	3,332	3,572	3,144
45	2,152	2,451	2,773	2,821	3,250	3,544	3,690

 $\Sigma_{i}[\Sigma_{j}(\ln(t_{j})-\ln(t_{m}))\log(h_{i})_{(t_{j})}]$ 123,575

Noti il numeratore ed il denominatore è possibile ora calcolare il coefficiente n:

$$n = \frac{123.575}{489.398} = 0.253$$

Noto n, è possibile determinare il secondo parametro necessario per regolarizzare le curve di caso critico, ossia a_i . Dalla relazione scritta in precedenza, e che qui ripetiamo per semplicità:

$$\ln a_i = \overline{\ln h_i(t_i)} - n \, \overline{\ln t_i}$$

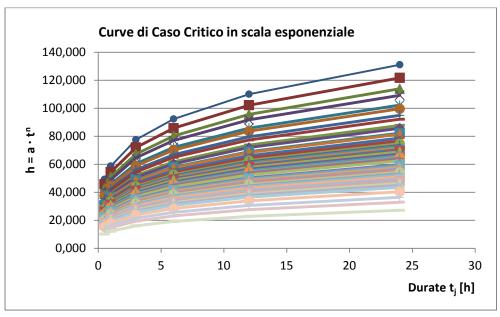
ricaviamo $\ln a$ per ogni caso critico e successivamente possiamo calcolare l'intercetta a facendo l'esponenziale: $\exp(\ln(a_i))$.

Facendo ciò si ottiene:

Caso CR (i)	In(h _m) _(tj)	In(a _i)	a _i	16	3,826	3,495	32,963				
1	4.405	4.074	58,792	17	3,816	3,485	32,630				
2	4,331	4,000	54,586	18	3,801	3,470	32,131				
		,		19	3,784	3,454	31,613				
3	4,264	3,933	51,067	20	3,769	3,438	31,133				
4	4,223	3,892	49,013	21	3,762	3,431	30,922				
5	4,156	3,825	45,855	22	3,738	3,408	30,192	34	3,501	3,170	23,817
6	4,130	3,799	44,672	23	3.719	3,388	29,601	35	3,488	3,157	23,506
	,			24	3,700	3,370	29,070	36	3,463	3,132	22,930
7	4,082	3,751	42,578	25	3,691	3,360	28,800	37	3,431	3,100	22,192
8	4,053	3,722	41,351	26	3,676	3,345	28,368	38	3,398	3,068	21,492
9	4,004	3,673	39,382	27	3,664	3,333	28,025	39	3,366	3,036	20,814
10	3,980	3,649	38,436	28	3,621	3,290	26,846	40	3,337	3,006	20,211
11	3,939	3,608	36,882	29	3,606	3,276	26,459	41	3,304	2,973	19,552
12	3,929	3,599	36,545	30	3,584	3,253	25,870	42	3,228	2,897	18,129
13	3,895	3,564	35,321	31	3,566	3,235	25,418	43	3,125	2,794	16,348
14	3,869	3,538	34,410	32	3,550	3,219	25,013	44	3,024	2,693	14,779
15	3,843	3,512	33,512	33	3,525	3,194	24,388	45	2,832	2,501	12,195

Nota. L'utilità delle curve di possibilità pluviometrica sta nel fatto che forniscono i valori più elevati di pioggia (di primo, secondo,...,caso critico), anche per durate diverse da quelle disponibili negli annali, ossia 1, 3, 6, 12 e 24 ore.

6) Ora è possibile rappresentare le curve di caso critico:


a) regolarizzate

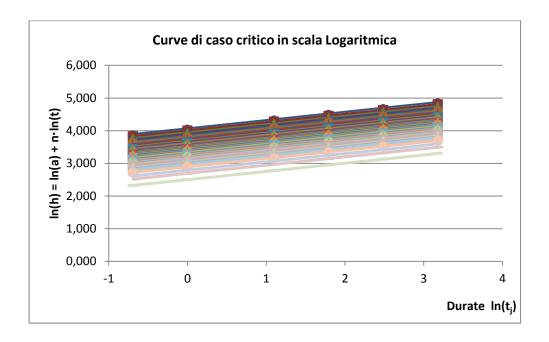
secondo la relazione:

$$h_i(t_j) = a_i t_j^n$$

Nella tabella seguente vengono riportati i valori delle altezze di precipitazione regolarizzate:

					12	24							
1 4	49,353	58,792	77,588	92,429	110,108	131,168	23	24,848	29,601	39,064	46,536	55,437	66,041
2	45,822	54,586	72,037	85,816	102,230	121,784	24	24,403	29,070	38,364	45,702	54,443	64,857
3 4	42,867	51,067	67,393	80,283	95,639	113,932	25	24,176	28,800	38,008	45,277	53,938	64,255
4 4	41,143	49,013	64,682	77,054	91,792	109,350	26	23,813	28,368	37,437	44,598	53,128	63,290
5	38,493	45,855	60,515	72,090	85,879	102,305	27	23,525	28,025	36,985	44,059	52,486	62,525
6 3	37,499	44,672	58,953	70,229	83,662	99,665	28	22,535	26,846	35,428	42,205	50,277	59,894
7 3	35,742	42,578	56,190	66,938	79,741	94,994	29	22,211	26,459	34,918	41,597	49,553	59,031
	-			,	,		30	21,716	25,870	34,140	40,670	48,449	57,716
	34,712	41,351	54,571	65,009	77,443	92,256	31	21,337	25,418	33,545	39,961	47,604	56,710
9 3	33,058	39,382	51,972	61,913	73,755	87,862	32	20,997	25,013	33,010	39,323	46,845	55,805
10	32,264	38,436	50,724	60,426	71,983	85,752	33	20,472	24,388	32,185	38,341	45,675	54,411
11 3	30,960	36,882	48,674	57,983	69,074	82,286	34	19,993	23,817	31,432	37,444	44,606	53,138
12 3	30,677	36,545	48,228	57,453	68,442	81,533	35	19,731	23,506	31,020	36,954	44,022	52,442
13 2	29,650	35,321	46,613	55,529	66,150	78,803	36	19,249	22,930	30,261	36,049	42,945	51,159
14 2	28,885	34,410	45,411	54,097	64,444	76,770	37	18,629	22,192	29,287	34,889	41,562	49,512
15 2	28,131	33,512	44,226	52,685	62,762	74,767	38	18,041	21,492	28,363	33,788	40,251	47,950
16 2	27,671	32,963	43,502	51,822	61,734	73,542	39	17,472	20,814	27,468	32,721	38,980	46,436
17 2	27,391	32,630	43,062	51,299	61,111	72,800	40	16,966	20,211	26,673	31,775	37,852	45,092
18 2	26,972	32,131	42,403	50,514	60,176	71,686	41	16,413	19,552	25,803	30,738	36,618	43,622
19 2	26,537	31,613	41,719	49,699	59,205	70,529	42	15,218	18,129	23,924	28,500	33,952	40,446
20 2	26,134	31,133	41,086	48,945	58,307	69,459	43	13,723	16,348	21,575	25,701	30,617	36,473
21 2	25,958	30,922	40,808	48,614	57,912	68,989	44	12,406	14,779	19,503	23,234	27,678	32,972
22 2	25,345	30,192	39,845	47,466	56,545	67,360	45	10,237	12,195	16,094	19,172	22,839	27,208

b) linearizzate


secondo la relazione:

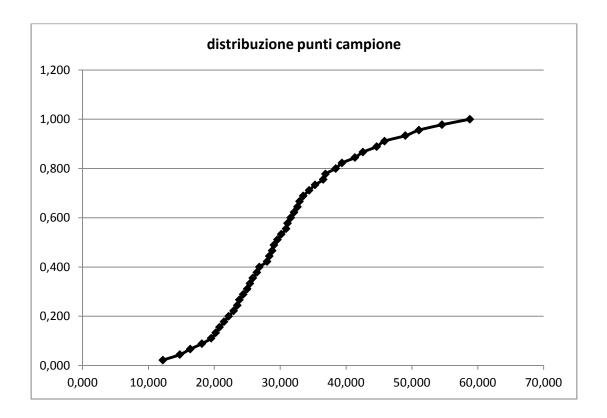
$$\ln h_i(t_j) = \ln a_i + n \ln t_j$$

Nella tabella seguente vengono riportati i valori delle altezze di precipitazione linearizzate:

Caso CR	-0,69315	0	1,098612	1,791759	2,484907	3,178054
1	3,899	4,074	4,351	4,526	4,701	4,876
2	3,825	4,000	4,277	4,452	4,627	4,802
3	3,758	3,933	4,211	4,386	4,561	4,736
4	3,717	3,892	4,169	4,345	4,520	4,695
5	3,650	3,825	4,103	4,278	4,453	4,628
6	3,624	3,799	4,077	4,252	4,427	4,602
7	3,576	3,751	4,029	4,204	4,379	4,554
8	3,547	3,722	3,999	4,175	4,350	4,525
9	3,498	3,673	3,951	4,126	4,301	4,476
10	3,474	3,649	3,926	4,101	4,276	4,451
11	3,433	3,608	3,885	4,060	4,235	4,410
12	3,424	3,599	3,876	4,051	4,226	4,401
13	3,389	3,564	3,842	4,017	4,192	4,367
14	3,363	3,538	3,816	3,991	4,166	4,341
15	3,337	3,512	3,789	3,964	4,139	4,314
16	3,320	3,495	3,773	3,948	4,123	4,298
17	3,310	3,485	3,763	3,938	4,113	4,288
18	3,295	3,470	3,747	3,922	4,097	4,272
19	3,279	3,454	3,731	3,906	4,081	4,256
20	3,263	3,438	3,716	3,891	4,066	4,241
21	3,256	3,431	3,709	3,884	4,059	4,234
22	3,233	3,408	3,685	3,860	4,035	4,210

22	2 242	2 200	2 665	2 0 4 0	4 O1E	4 400
23	3,213	3,388	3,665	3,840	4,015	4,190
24	3,195	3,370	3,647	3,822	3,997	4,172
25	3,185	3,360	3,638	3,813	3,988	4,163
26	3,170	3,345	3,623	3,798	3,973	4,148
27	3,158	3,333	3,611	3,786	3,961	4,136
28	3,115	3,290	3,568	3,743	3,918	4,093
29	3,101	3,276	3,553	3,728	3,903	4,078
30	3,078	3,253	3,530	3,705	3,881	4,056
31	3,060	3,235	3,513	3,688	3,863	4,038
32	3,044	3,219	3,497	3,672	3,847	4,022
33	3,019	3,194	3,472	3,647	3,822	3,997
34	2,995	3,170	3,448	3,623	3,798	3,973
35	2,982	3,157	3,435	3,610	3,785	3,960
36	2,957	3,132	3,410	3,585	3,760	3,935
37	2,925	3,100	3,377	3,552	3,727	3,902
38	2,893	3,068	3,345	3,520	3,695	3,870
39	2,861	3,036	3,313	3,488	3,663	3,838
40	2,831	3,006	3,284	3,459	3,634	3,809
41	2,798	2,973	3,250	3,426	3,601	3,776
42	2,722	2,897	3,175	3,350	3,525	3,700
43	2,619	2,794	3,072	3,247	3,422	3,597
44	2,518	2,693	2,971	3,146	3,321	3,496
45	2.326	2.501	2.778	2.953	3.128	3.304

7) Determiniamo la frequenza empirica di non superamento.


L'ordine di una curva di caso critico indica la frequenza con cui i valori che essa regolarizza sono stati raggiunti e superati negli N anni di osservazione. Di conseguenza possiamo esprimere con la seguente relazione la frequenza con cui i valori della i-esima curva di caso critico sono stati non superati:

$$F_{i} = \frac{N - i + 1}{N}$$

Possiamo pertanto diagrammare tutte le coppie di valori a_i ; F_i (distribuzione dei punti campione).

Caso CR (i)	Fi	ai
1	0,978	58,792
2	0,957	54,586
3	0,935	51,067
4	0,913	49,013
5	0,891	45,855
6	0,870	44,672
7	0,848	42,578
8	0,826	41,351
9	0,804	39,382
10	0,783	38,436
11	0,761	36,882
12	0,739	36,545
13	0,717	35,321
14	0,696	34,410
15	0,674	33,512
16	0,652	32,963
17	0,630	32,630
18	0,609	32,131
19	0,587	31,613
20	0,565	31,133
21	0,543	30,922
22	0,522	30,192
23	0,500	29,601
24	0,478	29,070
25	0,457	28,800
26	0,435	28,368
27	0,413	28,025

28	0,391	26,846
29	0,370	26,459
30	0,348	25,870
31	0,326	25,418
32	0,304	25,013
33	0,283	24,388
34	0,261	23,817
35	0,239	23,506
36	0,217	22,930
37	0,196	22,192
38	0,174	21,492
39	0,152	20,814
40	0,130	20,211
41	0,109	19,552
42	0,087	18,129
43	0,065	16,348
44	0,043	14,779
45	0,022	12,195

8) Determinazione delle curve di probabilità pluviometrica.

Si va a determinare la funzione di probabilità pluviometrica che meglio si adatta ai nostri dati, ossia alla distribuzione dei punti campione (punto 6).

Le distribuzioni che in genere vengono adottate sono:

a) la distribuzione normale (o di Gauss)

$$P(a) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{a} e^{\left[-\frac{(a-\mu)^2}{2\sigma^2}\right]} da$$

che dipende da due parametri:

- la media μ della variabile a_i
- la varianza σ^2 della variabile a_i

tali parametri possono essere stimati, in base ai valori di precipitazione a_i (con i = 1, 2, ..., N), tramite le espressioni:

$$\mu \cong \frac{1}{N} \sum_{i=1}^{N} a_i$$

$$\sigma^2 \cong \frac{1}{N-1} \sum_{i=1}^{N} (a_i - \mu)^2$$

b) la distribuzione log-normale (o di Galton)

$$P(a) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{\ln a} e^{\left[-\frac{(\ln a - \mu)^2}{2\sigma^2}\right]} d(\ln a)$$

che dipende da due parametri:

- la media μ della variabile ln a_i
- la varianza σ^2 della variabile ln a_i

tali parametri possono essere stimati, in base ai valori di precipitazione $\ln a_i$ (con i = 1, 2, ..., N), tramite le espressioni:

$$\mu \cong \frac{1}{N} \sum_{1}^{N} \ln a_{i}$$

$$\sigma^{2} \cong \frac{1}{N-1} \sum_{1}^{N} (\ln a_{i} - \mu)^{2}$$

c) la distribuzione di Gumbel

$$P(a) = e^{-e^{-\alpha(a_i - \beta)}}$$

che dipende dai parametri:

$$-\alpha = \frac{1,283}{\sigma}$$

$$-\beta = \mu - 0.45\sigma$$

- μ e σ sono definiti come prima.

Nota. Importante è capire il perché di queste varie curve di probabilità pluviometrica. Si consideri che i valori riportati nella prima riga della tabella del punto 3 e rappresentati dalla prima curva di caso critico sono i più elevati che si sono verificati durante il periodo di registrazione, essi sono pertanto i massimi in *N* anni.

Il problema è rappresentato dal fatto che nel migliore dei casi, come nel nostro, risulta N = 30-40 anni e se si vuole ricostruire un evento di piena di tempo di ritorno di 100 o addirittura 500 anni non abbiamo dati a sufficienza.

Per questo, si ha dunque necessità di disporre di uno strumento analitico che permetta di stimare le massime altezze di pioggia indipendentemente dalla dimensione campionaria. Per fare ciò i dati storici devono essere sostituiti da altezze "stimate" di assegnata probabilità di non superamento ovvero di dato **tempo di ritorno**.

Si ricerca dunque la legge di distribuzione di probabilità che meglio si adatta ai dati storici: si ipotizza una legge, si tara sulla base dei dati campionari e si verifica l'adattamento.

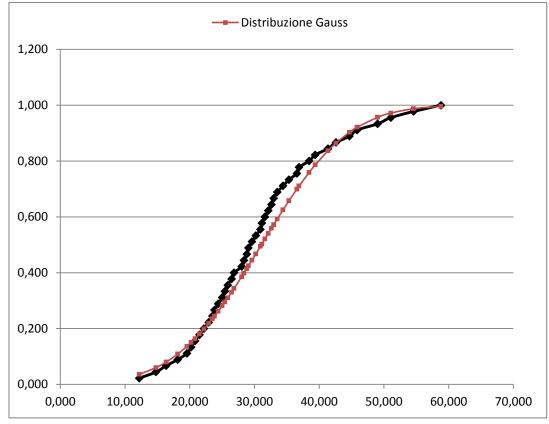
Sviluppiamo ora quanto detto:

a) la distribuzione normale (o di Gauss)

Procediamo calcolando in parametri che definiscono la funzione:

- la media μ della variabile a_i
- lo s.q.m. della variabile a_i , il quale è stato calcolato utilizzando la funzione "DEV.ST.C" implementata in Excel

PARAMETRI DELLA DISTRIBUZIONE NORMALE				
Media a _i 31,062				
SQM a _i	10,479			


Successivamente, facendo uso della funzione "DISTRIB.NORM.N" implementata in Excel, la quale ci richiede in Input:

- $-a_i$
- la media μ
- lo s.q.m.

abbiamo calcolato la funzione distribuzione di probabilità secondo Gauss.

Caso CR (i)	Fi	ai	DISTRIBUZIONE GAUSS P(a _i)
1	0,978	58,792	0,995931745
2	0,957	54,586	0,987613962
3	0,935	51,067	0,971873209
4	0,913	49,013	0,956648503
5	0,891	45,855	0,920984343
6	0,870	44,672	0,902990154
7	0,848	42,578	0,864111875
8	0,826	41,351	0,836914454
9	0,804	39,382	0,786380638
10	0,783	38,436	0,759175181
11	0,761	36,882	0,710691194
12	0,739	36,545	0,699585269
13	0,717	35,321	0,657777608
14	0,696	34,410	0,625310248
15	0,674	33,512	0,592424753
16	0,652	32,963	0,571973214
17	0,630	32,630	0,5594766
18	0,609	32,131	0,540616689
19	0,587	31,613	0,520941943
20	0,565	31,133	0,502686866
21	0,543	30,922	0,494671035

22	0,522	30,192	0,46691089
23	0,500	29,601	0,444538283
24	0,478	29,070	0,424603516
25	0,457	28,800	0,414535538
26	0,435	28,368	0,398526778
27	0,413	28,025	0,385962757
28	0,391	26,846	0,343687041
29	0,370	26,459	0,330209699
30	0,348	25,870	0,310096285
31	0,326	25,418	0,295072988
32	0,304	25,013	0,281863188
33	0,283	24,388	0,262081188
34	0,261	23,817	0,244651396
35	0,239	23,506	0,235399151
36	0,217	22,930	0,218855916
37	0,196	22,192	0,198636113
38	0,174	21,492	0,180531395
39	0,152	20,814	0,164016855
40	0,130	20,211	0,150205772
41	0,109	19,552	0,136000431
42	0,087	18,129	0,108541509
43	0,065	16,348	0,080124305
44	0,043	14,779	0,060090129
45	0,022	12,195	0,035885861

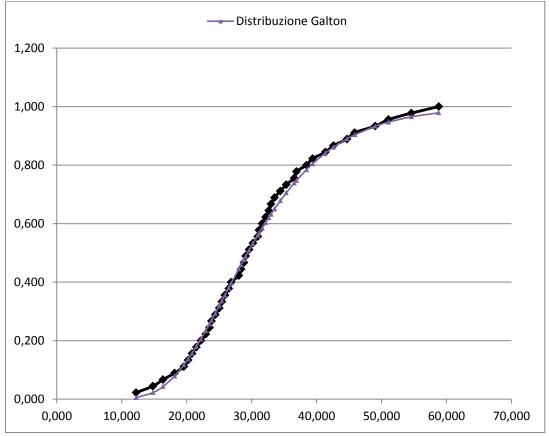
b) la distribuzione log-normale (o di Galton)

Procediamo calcolando in parametri che definiscono la funzione:

- la media μ della variabile ln a_i
- lo s.q.m. della variabile $\ln a_i$, il quale è stato calcolato utilizzando la funzione "DEV.ST.C" implementata in Excel

PARAMETRI DELLA DISTRIB. LOGNORMALE					
Media a _i 3,380					
SQM a _i	0,342				

Successivamente, facendo uso della funzione "DISTRIB.LOGNORM.N" implementata in Excel, la quale ci richiede in Input:


 $-a_i$

- la media μ
- lo s.q.m.

abbiamo calcolato la funzione distribuzione di probabilità secondo Galton.

Coop CD (i)	Fi	ai	DISTRIBUZIONE GALTON		
Caso CR (i)	FI	aı	P(a _i)		
1	0,978	58,792	0,978824029		
2	0,957	54,586	0,965069521		
3	0,935	51,067	0,947144132		
4	0,913	49,013	0,932886161		
5	0,891	45,855	0,903672565		
6	0,870	44,672	0,889946693		
7	0,848	42,578	0,861211133		
8	0,826	41,351	0,841389197		
9	0,804	39,382	0,804386067		
10	0,783	38,436	0,784137383		
11	0,761	36,882	0,747138711		
12	0,739	36,545	0,738465046		
13	0,717	35,321	0,705033514		
14	0,696	34,410	0,678123247		
15	0,674	33,512	0,649917408		
16	0,652	32,963	0,631853045		
17	0,630	32,630	0,620605688		
18	0,609	32,131	0,603316879		
19	0,587	31,613	0,584861034		
20	0,565	31,133	0,567335705		
21	0,543	30,922	0,559513948		
22	0,522	30,192	0,531805792		

23	0,500	29,601	0,508745334
24	0,478	29,070	0,487622438
25	0,457	28,800	0,476741393
26	0,435	28,368	0,459137175
27	0,413	28,025	0,445055017
28	0,391	26,846	0,395890979
29	0,370	26,459	0,379624112
30	0,348	25,870	0,354801844
31	0,326	25,418	0,335832276
32	0,304	25,013	0,318849893
33	0,283	24,388	0,292895619
34	0,261	23,817	0,269523487
35	0,239	23,506	0,25693395
36	0,217	22,930	0,234129433
37	0,196	22,192	0,205805207
38	0,174	21,492	0,18012013
39	0,152	20,814	0,156543022
40	0,130	20,211	0,136827131
41	0,109	19,552	0,116683168
42	0,087	18,129	0,078834328
43	0,065	16,348	0,043128728
44	0,043	14,779	0,022170907
45	0,022	12,195	0,005039159

c) la distribuzione di Gumbel

Procediamo calcolando in parametri che definiscono la funzione:

$$- \alpha = \frac{1,283}{}$$

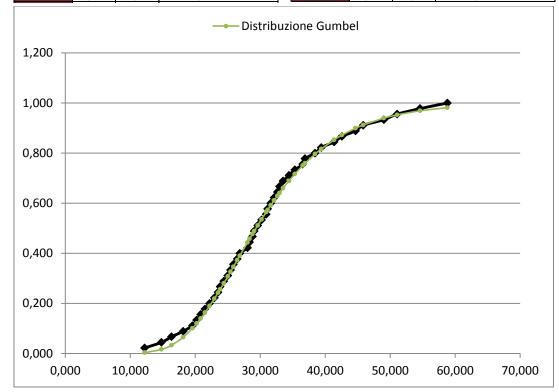
-
$$\beta = \mu - 0.45\sigma$$

dove μ e σ sono:

- la media μ della variabile a_i
- lo s.q.m. della variabile a_i

e quindi definiti come prima.

PARAMETRI DELLA DISTRIBUZIONE GUMBEL					
α	0,122				
β	26,347				


A questo punto possiamo applicare la relazione:

$$P(a) = e^{-e^{-\alpha(a_i - \beta)}}$$

per calcolare la funzione distribuzione di probabilità secondo Gumbel.

Caso CR (i)	Fi	ai	DISTRIBUZIONE GUMBEL
5455 ST. (.)			P(a _i)
1	0,978	58,792	0,98135201
2	0,957	54,586	0,968986026
3	0,935	51,067	0,952679981
4	0,913	49,013	0,939565933
5	0,891	45,855	0,912325151
6	0,870	44,672	0,89936434
7	0,848	42,578	0,871918679
8	0,826	41,351	0,852754681
9	0,804	39,382	0,816511305
10	0,783	38,436	0,79643728
11	0,761	36,882	0,759352828
12	0,739	36,545	0,750587733
13	0,717	35,321	0,716568517
14	0,696	34,410	0,6889316
15	0,674	33,512	0,65974296
16	0,652	32,963	0,640939835
17	0,630	32,630	0,629192368
18	0,609	32,131	0,611078413
19	0,587	31,613	0,591671294
20	0,565	31,133	0,573180833
21	0,543	30,922	0,564910337
22	0.522	30.192	0.535532147

			_
23	0,500	29,601	0,510998256
24	0,478	29,070	0,488471404
25	0,457	28,800	0,476850525
26	0,435	28,368	0,458030364
27	0,413	28,025	0,442962568
28	0,391	26,846	0,390322405
29	0,370	26,459	0,372913429
30	0,348	25,870	0,346379808
31	0,326	25,418	0,326142193
32	0,304	25,013	0,308065243
33	0,283	24,388	0,280535569
34	0,261	23,817	0,255874037
35	0,239	23,506	0,24265225
36	0,217	22,930	0,218835435
37	0,196	22,192	0,189541017
38	0,174	21,492	0,163316396
39	0,152	20,814	0,139595404
40	0,130	20,211	0,120070778
41	0,109	19,552	0,100472659
42	0,087	18,129	0,06486678
43	0,065	16,348	0,033315521
44	0,043	14,779	0,016204315
45	0,022	12,195	0,003495369

9) Avendo rappresentato le varie funzioni di probabilità pluviometrica già ad occhio vediamo che quella di Gumbel è la meglio che si adatta.

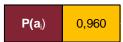
Per esser certi di ciò possiamo calcolare (in valore assoluto) le varie differenze i-esime tra la distribuzione di punti e la funzione considerata. La funzione che presenta la sommatoria minore sarà quella che meglio si adatta:

Caso CR (i)	Fi	DISTRIB. GAUSS	DISTRIB. GUMBEL	DISTRIB. GALTON	Diff Gauss	Diff Gumbel	Diff Galton
1	1,000	0,995931745	0,98135201	0,978824029	0,004068255	0,01864799	0,021175971
2	0,978	0,987613962	0,968986026	0,965069521	0,009836185	0,008791752	0,012708257
3	0,956	0,971873209	0,952679981	0,947144132	0,016317654	0,002875574	0,008411423
4	0,933	0,956648503	0,939565933	0,932886161	0,02331517	0,0062326	0,000447172
5	0,911	0,920984343	0,912325151	0,903672565	0,009873232	0,00121404	0,007438546
6	0,889	0,902990154	0,89936434	0,889946693	0,014101265	0,010475451	0,001057804
7	0.867	0.864111875	0,871918679	0.861211133	0.002554791	0,005252012	0,005455534
8	0.844	0,836914454	0.852754681	0.841389197	0,007529991	0,008310237	0,003055248
9	0.822	0,786380638	0,816511305	0,804386067	0,035841584	0,005710917	0,017836156
10	0,800	0,759175181	0,79643728	0,784137383	0,040824819	0,003710917	0,017836136
11	0,778	0.710691194	0.759352828	0,747138711	0.067086584	0.01842495	0.030639067
12	0.756	0.699585269	0,750587733	0.738465046	0.055970286	0.004967823	0.01709051
13	0,733	0.657777608	0.716568517	0.705033514	0.075555725	0.016764816	0.028299819
14	0,711	0.625310248	0.6889316	0.678123247	0.085800863	0.022179512	0.032987865
15	0.689	0.592424753	0.65974296	0.649917408	0.096464136	0.029145929	0.038971481
16	0,667	0,571973214	0,640939835	0,631853045	0,094693453	0,025726831	0,034813621
17	0,644	0,5594766	0,629192368	0,620605688	0,084967845	0,015252076	0,023838757
18	0.622	0.540616689	0.611078413	0.603316879	0.081605533	0.011143809	0.018905344
19	0,600	0,520941943	0,591671294	0,584861034	0,079058057	0,008328706	0,015138966
20	0,578	0,502686866	0,573180833	0,567335705	0,075090912	0,004596945	0,010442073
21	0,556	0,494671035	0,564910337	0,559513948	0,06088452	0,009354782	0,003958392
22	0,533	0,46691089	0,535532147	0,531805792	0,066422443	0,002198814	0,001527542
23	0,511	0,444538283	0,510998256	0,508745334	0,066572828	0,000112855	0,002365777
24	0,489	0,424603516	0,488471404	0,487622438	0,064285373	0,000417485	0,001266451
25	0,467	0,414535538	0,476850525	0,476741393	0,052131129	0,010183859	0,010074727
26	0,444	0,398526778	0,458030364	0,459137175	0,045917667	0,013585919	0,014692731
27	0,422	0,385962757	0,442962568	0,445055017	0,036259465	0,020740345	0,022832795
28	0,400	0,343687041	0,390322405	0,395890979	0,056312959	0,009677595	0,004109021
29	0,378	0,330209699	0,372913429	0,379624112	0,047568079	0,004864348	0,001846334
30	0,356	0,310096285	0,346379808	0,354801844	0,045459271	0,009175747	0,000753711
31	0,333	0,295072988	0,326142193	0,335832276	0,038260345	0,00719114	0,002498943
32	0,311	0,281863188	0,308065243	0,318849893	0,029247923	0,003045869	0,007738782
33	0,289	0,262081188	0,280535569	0,292895619	0,026807701	0,00835332	0,004006731
34	0,267	0,244651396	0,255874037	0,269523487	0,022015271	0,010792629	0,00285682
35	0,244	0,235399151	0,24265225	0,25693395	0,009045293	0,001792195	0,012489505
36	0,222	0,218855916	0,218835435	0,234129433	0,003366306	0,003386787	0,01190721
37 38	0,200	0,198636113	0,189541017	0,205805207	0,001363887	0,010458983	0,005805207
38	0,178	0,180531395	0,163316396 0.139595404	0,18012013	0,002753618 0.008461299	0,014461381	0,002342352 0.000987467
39 40	0,156 0.133	0,164016855 0,150205772	0,139595404	0,156543022 0,136827131	0,008461299	0,015960152 0,013262556	0,000987467
40	0,133	0,136000431	0,120070778	0,136827131	0,016872439	0,013262556	0,003493798
41	0,111	0,136000431	0,100472659	0,078834328	0,02488932	0,010638452	0,005572057
43	0,069	0,080124305	0,00480078	0,043128728	0,013457638	0,033351146	0,010034361
44	0,007	0.060090129	0,016204315	0.022170907	0,015645685	0.028240129	0,023337939
45	0,022	0,035885861	0,003495369	0,005039159	0,013663639	0,018726853	0,017183063
	-,	-,	-,	-,	3,0.000000	3,0.0.2000	3,0
					1,747873055	0,51160014	0,540751682

10) Calcolo della curva di probabilità pluviometrica.

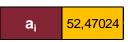
A questo punto, individuata la migliore distribuzione, essendo il campione è costituito da un numero elevato di punti (> 30 anni) possiamo dire che il campione è rappresentativo del fenomeno studiato e possiamo passare dalla frequenza al concetto di probabilità, $F \Rightarrow P$.

Nota. Per determinare la curva di probabilità pluviometrica basterà fare l'inverso della funzione di probabilità individuata.


Il dato in ingresso sarà il tempo di ritorno T_R da cui ricaviamo il corrispondente valore della probabilità:

$$P(a) = 1 - \frac{1}{T_R}$$

Con tale valore intercettiamo la curva e ricaviamo il valore di a_i.


Sviluppando quanto appena detto:

- inseriamo il tempo di ritorno desiderato nell'espressione precedente e otteniamo la probabilità P. Per cui, la probabilità $P(a_i)$ relativa ad un evento con tempo di ritorno $T_R = 25$ anni è:

- tramite la funzione inversa della funzione di distribuzione adottata, risulta univocamente determinato il valore di *a* ricercato:

$$a = \beta - \frac{\ln(-\ln P_i)}{\alpha}$$

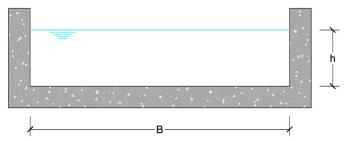
ESERCITAZIONE N. 2: PARTE 1)

Dimensionamento di canali e condotte a pelo libero

Si dimensioni un canale di pendenza costante i=0.0005 e di lunghezza 7000 m che deve condurre una portata Q di $50 \, m^3/s$ con un altezza d'acqua massima di $h=1,5 \, m$, ipotizzando una sezione rettangolare. Si supponga di voler rivestire il canale in calcestruzzo e quindi di volere velocità medie v comprese tra $0,3 \, m/s$ e $2,0 \, m/s$. Per il calcolo delle perdite di carico si utilizzi la formula di Strickler con $k_s=50 \, m^{1/3}/s$.

SVOLGIMENTO

L'obiettivo è determinare le dimensioni di un canale a pelo libero, avendo le seguenti limitazioni:


- Altezza h < 1.50 m
- Velocità $0.3 < v \le 2.00 \, m/s$

Il canale inoltre dovrà avere le seguenti caratteristiche:

- Pendenza costante i = 0.0005
- Lunghezza 7000 m

La portata che tale canale dovrà trasportare è di $50 m^3/s$.

1) Si ipotizza una sezione rettangolare del canale $(B \cdot h)$:

e di conseguenza definiamo:

- perimetro bagnato
- $p_b = B + 2h$
- area bagnata
- $A_b = B \cdot h$

2) Calcoliamo la portata, che sappiamo deve essere pari a $50 \text{ m}^3/\text{s}$:

$$Q = v \cdot A = v \cdot B \cdot h$$

Scegliamo di fissare inizialmente: $h = 1,20 \, m$ e $v \le 1,50 \, m/s$, ricavando una larghezza del canale pari a:

$$50 = 1,50 \cdot B \cdot 1,20 \implies B = \frac{50}{1,50 \cdot 1,20} = 27,8 \text{ m}$$

3) Calcoliamo area bagnata e perimetro bagnato per verificare, applicando la formula di "Chezy", che porta in conto le perdite di carico, la velocità effettiva e quindi la portata:

$$p_b = 27.8 + 2 \cdot 1.20 = 30.2 m$$

$$A_b = 27.8 \cdot 1.20 = 33.40 \, m^2$$

Il raggio idraulico sarà pari a:

$$R = A_b/P_b = 33,4/30,2 = 1,105 m$$

$$\Rightarrow v = \chi \cdot \sqrt{i \cdot R} = \left[K_s \cdot R^{\frac{1}{6}} \right] \cdot \sqrt{i \cdot R} = \left[50 \cdot 1,105^{\frac{1}{6}} \right] \cdot \sqrt{0,0005 \cdot 1,105} = 1,20 \text{ m/s}$$

$$\Rightarrow Q = v \cdot B \cdot h = 1,20 \cdot 27,8 \cdot 1,20 = 40,0 \text{ m}^3/\text{s}$$

Con le dimensioni ricavate si osserva che la velocità effettiva è inferiore a quella inizialmente fissata e di conseguenza anche la portata sarà inferiore ai $50 m^3/s$ richiesti. Per questa ragione si rende necessario un calcolo iterativo per la verifica del soddisfacimento di tutte le condizioni.

4) Calcolo iterativo.

Tale punto è stato affrontato facendo uso dell'applicazione "RISOLUTORE" implementata in Excel.

Si è proceduto:

- fissando la cella della portata al valore di $50 m^3/s$;
- facendo variare la cella dell'altezza h ma fissando la condizione h < 1,50 m;
- facendo variare senza vincoli la cella della base *B*.

Dal calcolo iterativo abbiamo ottenuto i seguenti valori:

$$h = 1,32 m$$

$$B = 29,66 m$$

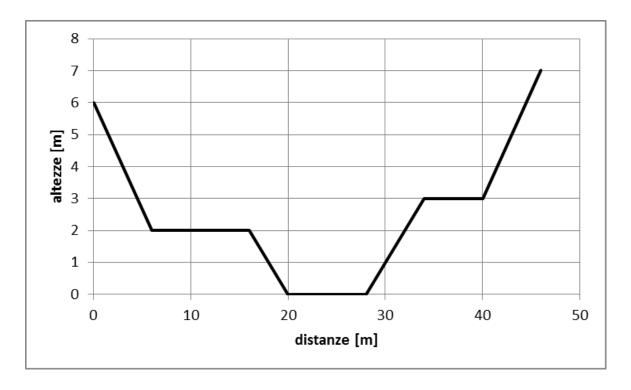
$$v = 1.27 \, m/s$$

Volendo eseguire una verifica possiamo calcolare la portata con la formula di "Chezy" aggiornando tutti i valori:

$$p_b = 29,66 + 2 \cdot 1,32 = 32,3 m$$

$$A_h = 29,66 \cdot 1,32 = 39,3 \, m^2$$

$$R = A_b/P_b = 39,15/32,3 = 1,215 m$$


$$\Rightarrow \ \ Q = A_b \cdot \chi \cdot \sqrt{i \cdot R} = 39.3 \cdot \left[50 \cdot 1.215^{\frac{1}{6}} \right] \cdot \sqrt{0.0005 \cdot 1.215} = 50.0 \ m^3/s \quad \ \, \sqrt{}$$

ESERCITAZIONE N. 2: PARTE 2)

Determinazione della scala delle portate

Un corso d'acqua presenta nella sua parte valliva un tratto con pendenza media dello 0,2% con una sezione di tipo composto con alveo di magra e sezioni golenali (vedi Figura 1).

Tenendo conto del fatto che la scabrezza dell'alveo può essere considerata approssimativamente uniforme lungo il contorno della sezione ed esprimibile con un coefficiente di Strickler $k_s = 35 \, m^{1/3}/s$, calcolare e riportare in un grafico la **scala delle portate** calcolata sia dividendo in sottosezioni sia considerando la sezione complessiva.

SVOLGIMENTO

1) Nel foglio elettronico di Excel impostiamo in una prima colonna h le quote del canale con passo $\Delta h = 0.2 \, m$ a partire da $0.0 \, m$ (fondo del canale) fino alla quota massima di $6.0 \, m$.

In corrispondenza di ogni quota calcoliamo, per ogni sottosezione del canale (ovvero, alveo di magra, golena sx e golena dx), l'area ed il raggio idraulico.

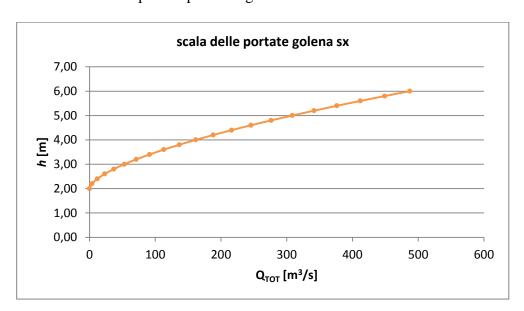
Nota. Poiché la sezione del canale non è costante con la quota, le relazioni per la determinazione di A ed R (per ogni sottosezione) saranno necessariamente definite per livelli e vengono date come relazioni geometriche in funzione di h:

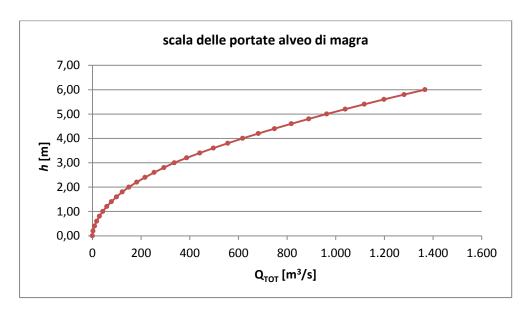
- Alveo di magra
 - per $h \le 2 m$ $A = h \cdot (8 + n_1 \cdot h)$ $R = \frac{A}{8 + 2 \cdot h \cdot \sqrt{1 + n_1^2}}$
 - per $2 \le h \le 3 m$ $A = 2 \cdot (8 + n_1 \cdot 2) + (h - 2) \cdot [8 + 4 \cdot n_1 + n_1 \cdot (h - 2)/2]$ $R = \frac{A}{8 + (2 + h) \cdot \sqrt{1 + n_1^2}}$
 - per $3 \le h \le 6 m$ $A = 2 \cdot (8 + n_1 \cdot 2) + \left[8 + 4 \cdot n_1 + \frac{n_1}{2} \right] + (8 + 5 \cdot n_1) \cdot (h 3)$ $R = \frac{A}{8 + 5 \cdot \sqrt{1 + n_1^2}}$
- Golena sinistra
 - per $h \ge 2 m$ $A = (h-2) \cdot [10 + n_2 \cdot (h-2)/2]$ $R = \frac{A}{10 + (h-2) \cdot \sqrt{1 + n_2^2}}$
- Golena destra
 - per $h \ge 3 m$ $A = (h-3) \cdot [6 + n_2 \cdot (h-3)/2]$ $R = \frac{A}{6 + (h-3) \cdot \sqrt{1 + n_2^2}}$

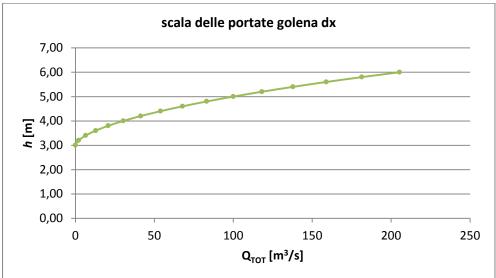
Con n_1 e n_2 sono indicate le pendenze delle sponde dell'alveo di magra e delle sponde delle golene e valgono rispettivamente 4/2 e 6/4.

In corrispondenza di ogni quota abbiamo così 6 valori che ci indicano rispettivamente:

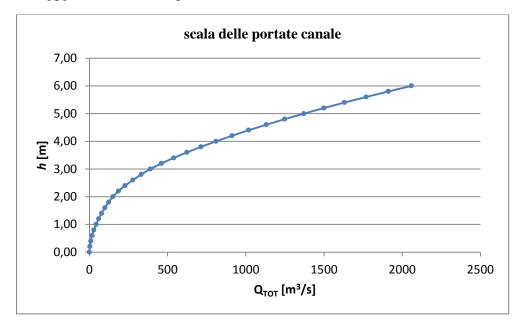
- A_{Am}: area alveo di magra
- A_{Gsx}: area golena sinistra
- A_{Gdx}: area golena destra
- R_{Am}: raggio idraulico alveo di magra
- R_{Gsx}: raggio idraulico golena sinistra
- R_{Gdx}: raggio idraulico golena destra
- $A_{TOT} = A_{Am} + A_{Gsx} + A_{Gdx}$: area totale della sezione.


h	A_{Gsx}	A _{Am}	A_{Gdx}	R_{Gsx}	R_{Am}	R_{Gdx}	A _{TOT}
0,00		0,00			0,000		0,00
0,20		1,68			0,189		1,68
0,40		3,52			0,360		3,52
0,60		5,52			0,517		5,52
0,80		7,68			0,663		7,68
1,00		10,00			0,802		10,00
1,20		12,48			0,934		12,48
1,40		15,12			1,060		15,12
1,60		17,92			1,182		17,92
1,80		20,88			1,301		20,88
2,00	0,00	24,00		0,000	1,416		24,00
2,20	2,17	27,24		0,209	1,566		29,41
2,40	4,36	30,56		0,407	1,713		34,92
2,60	6,59	33,96		0,594	1,857		40,55
2,80	8,84	37,44		0,773	1,999		46,28
3,00	11,13	41,00	0,00	0,943	2,138	0,000	52,13
3,20	13,44	44,60	1,23	1,105	2,325	0,193	59,27
3,40	15,79	48,20	2,52	1,260	2,513	0,375	66,51
3,60	18,16	51,80	3,87	1,409	2,701	0,546	73,83
3,80	20,57	55,40	5,28	1,553	2,888	0,709	81,25
4,00	23,00	59,00	6,75	1,690	3,076	0,865	88,75
4,20	25,47	62,60	8,28	1,823	3,264	1,014	96,35
4,40	27,96	66,20	9,87	1,952	3,451	1,158	104,03
4,60	30,49	69,80	11,52	2,076	3,639	1,297	111,81
4,80	33,04	73,40	13,23	2,196	3,827	1,431	119,67
5,00	35,63	77,00	15,00	2,312	4,015	1,562	127,63
5,20	38,24	80,60	16,83	2,425	4,202	1,689	135,67
5,40	40,89	84,20	18,72	2,535	4,390	1,813	143,81
5,60	43,56	87,80	20,67	2,642	4,578	1,934	152,03
5,80	46,27	91,40	22,68	2,746	4,765	2,053	160,35
6,00	49,00	95,00	24,75	2,847	4,953	2,169	168,75


- 2) Successivamente, utilizzando la formula di "Chezy", calcoliamo per ogni riga e per ogni sottosezione le portata ad essa associata. Le portate così calcolate per alveo e golene, vengono sommate e danno la portata complessiva della sezione del canale per ogni altezza h.
 - Alveo di magra $Q_{Am} = A_{Am} \cdot \chi \cdot \sqrt{i \cdot R_{Am}}$
 - Golena sinistra $Q_{\rm Gsx} = {\rm A}_{\rm Gsx} \cdot \chi \cdot \sqrt{i \cdot {\rm R}_{\rm Gsx}}$
 - Golena destra $Q_{\rm Gdx} = {\rm A}_{\rm Gdx} \cdot \chi \cdot \sqrt{i \cdot {\rm R}_{\rm Gdx}}$
 - Sezione canale $Q_{\mathrm{TOT}} = Q_{Am} + Q_{\mathrm{Gsx}} + Q_{\mathrm{Gdx}}$


h	A_{Gsx}	A_{Am}	A_{Gdx}	R_{Gsx}	R_{Am}	R_{Gdx}	A _{TOT}	\mathbf{Q}_{Gsx}	\mathbf{Q}_{Am}	\mathbf{Q}_{Gdx}	Q_{TOT}
0,00		0,00			0,000		0,00		0,00		0,00
0,20		1,68			0,189		1,68		2,74		2,74
0,40		3,52			0,360		3,52		8,81		8,81
0,60		5,52			0,517		5,52		17,59		17,59
0,80		7,68			0,663		7,68		28,91		28,91

1,00		10,00			0,802		10,00		42,72		42,72
1,20		12,48			0,934		12,48		59,01		59,01
1,40		15,12			1,060		15,12		77,82		77,82
1,60		17,92			1,182		17,92		99,18		99,18
1,80		20,88			1,301		20,88		123,16		123,16
2,00	0,00	24,00		0,000	1,416		24,00	0,00	149,83		149,83
2,20	2,17	27,24		0,209	1,566		29,41	3,77	181,85		185,62
2,40	4,36	30,56		0,407	1,713		34,92	11,85	216,57		228,41
2,60	6,59	33,96		0,594	1,857		40,55	23,04	253,97		277,01
2,80	8,84	37,44		0,773	1,999		46,28	36,84	294,04		330,88
3,00	11,13	41,00	0,00	0,943	2,138	0,000	52,13	52,94	336,76	0,00	389,70
3,20	13,44	44,60	1,23	1,105	2,325	0,193	59,27	71,10	387,47	2,04	460,61
3,40	15,79	48,20	2,52	1,260	2,513	0,375	66,51	91,17	440,99	6,49	538,64
3,60	18,16	51,80	3,87	1,409	2,701	0,546	73,83	113,00	497,24	12,80	623,04
3,80	20,57	55,40	5,28	1,553	2,888	0,709	81,25	136,49	556,15	20,79	713,43
4,00	23,00	59,00	6,75	1,690	3,076	0,865	88,75	161,55	617,68	30,33	809,57
4,20	25,47	62,60	8,28	1,823	3,264	1,014	96,35	188,12	681,77	41,37	911,26
4,40	27,96	66,20	9,87	1,952	3,451	1,158	104,03	216,13	748,36	53,87	1018,36
4,60	30,49	69,80	11,52	2,076	3,639	1,297	111,81	245,53	817,41	67,80	1130,74
4,80	33,04	73,40	13,23	2,196	3,827	1,431	119,67	276,27	888,87	83,16	1248,30
5,00	35,63	77,00	15,00	2,312	4,015	1,562	127,63	308,32	962,71	99,94	1370,97
5,20	38,24	80,60	16,83	2,425	4,202	1,689	135,67	341,65	1038,89	118,13	1498,67
5,40	40,89	84,20	18,72	2,535	4,390	1,813	143,81	376,22	1117,38	137,76	1631,36
5,60	43,56	87,80	20,67	2,642	4,578	1,934	152,03	412,02	1198,13	158,82	1768,97
5,80	46,27	91,40	22,68	2,746	4,765	2,053	160,35	449,02	1281,12	181,33	1911,46
6,00	49,00	95,00	24,75	2,847	4,953	2,169	168,75	487,20	1366,32	205,30	2058,82


3) Diagrammiamo le scale delle portate per le singole sottosezioni:

4) La scala delle portate della sezione totale del canale la ricaviamo diagrammando in ascissa la portata totale Q_{TOT} e in ordinata la quota h.

Il raggio idraulico della sezione totale lo possiamo calcolare applicando sempre la formula di "Chezy" considerando la portata totale e l'area totale e facendone la formula inversa.

$$k_s = 35$$

 $i = 0.02$

$$Q(h) = V(h) \cdot A(h) = \chi \cdot A(h) \cdot \sqrt{R(h) \cdot i}$$

$$R(h) = \left(\frac{Q_{\text{TOT}}^2}{K_s^2 \cdot A_{\text{TOT}}^2 \cdot i}\right)^{\frac{3}{4}} = \left(\frac{2058,816^2}{35^2 \cdot 168,75^2 \cdot 0,02}\right)^{\frac{3}{4}} = 3,87 \text{ m}$$

ESERCITAZIONE N. 3: PARTE 1)

Stima delle portate di piena a partire da osservazioni idrometriche

Nella sezione di "Fuentes" dell'Adda vengono regolarmente effettuate le misure di livello (altezza idrometrica) in continuo mediante un idrometrografo. Da queste misure sono state calcolate le corrispondenti portate al colmo per il periodo 1911–1968. Ipotizzando che tali massimi seguano la distribuzione di Gumbel, si chiede di:

- 1) Trovare i valori dei parametri della distribuzione di probabilità;
- 2) Disegnare su carta probabilistica la curva rappresentante la distribuzione di probabilità insieme con le frequenze cumulate del campione, valutate con la formula di Gringorten:

$$F(x_i) = \frac{i - 0.44}{n + 0.12}$$

essendo i il numero d'ordine nella serie ordinata in senso crescente ed n la numerosità del campione;

3) Stimare la portata corrispondente ad un tempo di ritorno di 100 anni.

SVOLGIMENTO

La stima della portata di massima piena rappresenta uno dei problemi idrologici più importanti poiché relazionato alla difesa dalle acque. Tale problema può essere affrontato con diversi metodi:

- Metodi empirici;
- Metodi che partono dalle precipitazioni;
- Metodi probabilistici.

In questa esercitazione faremo riferimento ai metodi probabilistici, i quali si basano sull'ipotesi che non esiste un valore massimo dell'evento, ma attribuiscono ad ogni valore una probabilità di superamento.

Nello studio della portata di massima piena l'ipotesi probabilistica può intervenire a due distinti livelli, a seconda dei dati disponibili.

- a) Se esistono osservazioni di portata per un periodo sufficientemente lungo nella sezione che interessa, allora si può stimare direttamente la distribuzione di probabilità delle portate di piena a partire proprio dai valori osservati delle portate;
- b) Se invece mancano osservazioni di portata, allora lo studio probabilistico deve essere condotto sulle osservazioni di precipitazione, ed essere successivamente trasferito, per metto di modelli di trasformazione degli afflussi in deflussi, ai valori delle portate.

Dopo questa breve introduzione al problema, come già ci viene detto dal testo, in questo caso disponiamo di sufficienti valori osservati delle portate per poter condurre un approccio probabilistico.

1) Il primo passo per l'impiego dei metodi probabilistici è la selezione dei dati di base. In questo caso il metodo impiegato per operare la selezione dei dati, e garantire quindi l'omogeneità e l'indipendenza stocastica degli stessi, è il metodo dei massimi annuali: la serie empirica viene costruita considerando tra tutti i valori osservati solo i massimi valori annuali di portata al colmo.

Anno	Q [m³/s]		
1911	1187		
1927	1160		
1928	860		
1929	502		
1930	517		
1931	517		
1932	581		
1933	688		
1934	429		
1935	1000		
1936	525		
1937	930		
1938	418		
1939	759		
1940	502		
1941	443		
1942	863		
1943	329		
1944	510		
1945	541		
1946	682		

1947	457
1948	1060
1949	225
1950	334
1951	878
1952	715
1953	475
1954	820
1955	556
1956	779
1957	744
1958	643
1959	248
1960	1070
1961	523
1962	280
1963	488
1964	311
1965	942
1966	271
1967	305
1968	670

A questo punto possiamo calcolare, come ci viene richiesto, i parametri della distribuzione di Gumbel.

La distribuzione di Gumbel:

$$P(x) = e^{-e^{-\alpha(x_i - \beta)}}$$

dipende dai parametri:

•
$$\alpha = \frac{1,283}{\sigma}$$

• $\beta = \mu - 0,45\sigma$

•
$$\beta = \mu - 0.45\sigma$$

dove μ e σ sono:

• la media della variabile x_i

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Facendo uso della funzione "MEDIA" implementata in Excel abbiamo ottenuto:

$$\mu = 621,791$$

lo s.q.m. della variabile x_i

Questo è dato dalla radice quadrata della varianza:

$$\sigma^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

s. q. m. =
$$\sigma = \sqrt{\sigma^2}$$

Facendo uso della funzione "DEV.ST.C" implementata in Excel abbiamo ottenuto:

$$\sigma = 258,891$$

Finalmente possiamo determinare:

$$\alpha = \frac{1,283}{271,215} = 0,00496$$

$$\beta = 614,814 - 0,45 \cdot 271,215 = 505,290$$

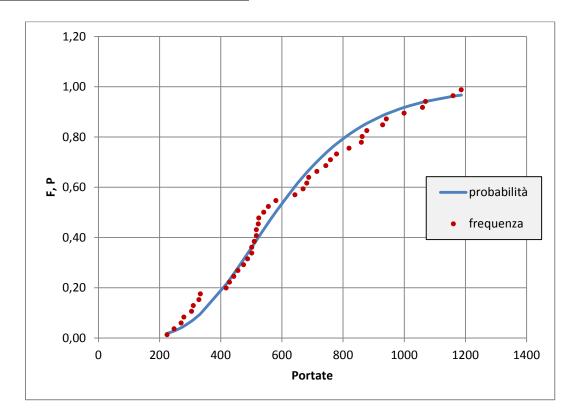
2) Ordiniamo ora la serie di dati in ordine crescente ed associamo ad ogni valore campionario una frequenza empirica di non superamento, determinandola attraverso la formula di Gringorten (la più adatta per analisi dei valori massimi):

$$F(x_i) = \frac{i - 0.44}{n + 0.12}$$

Possiamo pertanto diagrammare tutte le coppie di valori x_i ; F_i (distribuzione dei punti campione).

A questo punto diagrammiamo anche la funzione distribuzione di probabilità secondo Gumbel applicando la relazione:

$$P(x) = e^{-e^{-\alpha(x_i - \beta)}}$$


sulla base dei parametri α e β calcolati al punto precedente.

i	Dati osservati	F(x _i) (Gringorten)	P(<i>x_i</i>) (Gumbel)
1	225	0,0130	0,0181
2	248	0,0362	0,0279
3	271	0,0594	0,0410
4	280	0,0826	0,0472
5	305	0,1058	0,0673
6	311	0,1289	0,0729
7	329	0,1521	0,0911
8	334	0,1753	0,0966
9	418	0,1985	0,2141
10	429	0,2217	0,2324
11	443	0,2449	0,2562

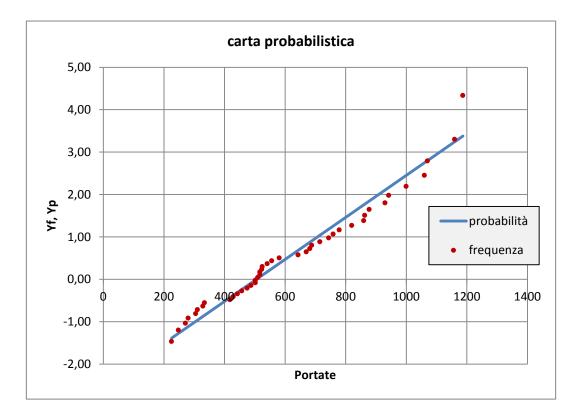
12	457	0,2681	0,2807
13	475	0,2913	0,3129
14	488	0,3145	0,3364
15	502	0,3377	0,3619
16	502	0,3609	0,3619
17	510	0,3840	0,3765
18	517	0,4072	0,3892
19	517	0,4304	0,3892
20	523	0,4536	0,4001
21	525	0,4768	0,4038
22	541	0,5000	0,4327
23	556	0,5232	0,4594
24	581	0,5464	0,5030

25	643	0,5696	0,6033
26	670	0,5928	0,6427
27	682	0,6160	0,6593
28	688	0,6391	0,6674
29	715	0,6623	0,7021
30	744	0,6855	0,7361
31	759	0,7087	0,7525
32	779	0,7319	0,7729
33	820	0,7551	0,8104
34	860	0,7783	0,8416

35	863	0,8015	0,8438
36	878	0,8247	0,8541
37	930	0,8479	0,8853
38	942	0,8711	0,8915
39	1000	0,8942	0,9175
40	1060	0,9174	0,9380
41	1070	0,9406	0,9409
42	1160	0,9638	0,9618
43	1187	0,9870	0,9665

Volendo una rappresentazione su carta probabilistica, linearizziamo frequenza e probabilità facendone i logaritmi:

$$y_f = -\ln[-\ln(F(x_i))]$$


$$y_p = -\ln[-\ln(P(x_i))] = \alpha \cdot (x_i - \beta)$$

i	Dati osservati	Yf (Gringorten)	Yp (Gumbel)
1	225	-1,46875	-1,38905
2	248	-1,19975	-1,27506
3	271	-1,03815	-1,16108
4	280	-0,91398	-1,11648
5	305	-0,80945	-0,99259
6	311	-0,71705	-0,96285
7	329	-0,63286	-0,87365
8	334	-0,55453	-0,84887
9	418	-0,48050	-0,43259
10	429	-0,40972	-0,37807
11	443	-0,34140	-0,30869
12	457	-0,27493	-0,23931
13	475	-0,20983	-0,15011
14	488	-0,14571	-0,08568

15	502	-0,08223	-0,01630
16	502	-0,01910	-0,01630
17	510	0,04396	0,02334
18	517	0,10718	0,05803
19	517	0,17081	0,05803
20	523	0,23509	0,08777
21	525	0,30024	0,09768
22	541	0,36651	0,17697
23	556	0,43416	0,25131
24	581	0,50346	0,37520
25	643	0,57471	0,68246
26	670	0,64825	0,81626
27	682	0,72447	0,87573
28	688	0,80381	0,90547
29	715	0,88678	1,03927
30	744	0,97401	1,18299

31	759	1,06626	1,25733
32	779	1,16444	1,35644
33	820	1,26975	1,55963
34	860	1,38369	1,75786
35	863	1,50828	1,77272
36	878	1,64628	1,84706
37	930	1,80161	2,10476

38	942	1,98016	2,16423
39	1000	2,19130	2,45166
40	1060	2,45145	2,74901
41	1070	2,79353	2,79856
42	1160	3,30093	3,24458
43	1187	4,33728	3,37839

3) Stimiamo ora la portata massima corrispondente ad un tempo di ritorno T_R di 100 anni. La relazione che lega la probabilità al tempo di ritorno è la seguente:

$$P(x) = 1 - \frac{1}{T_R}$$

Ricaviamo quindi la probabilità associata all'evento il cui tempo di ritorno è 100 anni:

$$P(x) = 1 - \frac{1}{100} = 0.99$$

Dal punto di vista grafico, con tale valore di probabilità entriamo quindi nel grafico in ordinata, procediamo orizzontalmente fino ad intersecare la funzione di probabilità e a quel punto leggiamo in ascissa il valore della portata ricercato.

Analiticamente ciò si traduce nel calcolare la formula inversa della distribuzione di Gumbel:

$$-\ln[-\ln(P(x_i))] = \alpha \cdot (x_i - \beta)$$

$$x = \mathbf{Q_{100}} = \frac{-\ln[-\ln(P(x_i))]}{\alpha} + \beta = \frac{-\ln[-\ln(0.99)]}{0.00496} + 505,290 = 1433 \, m^3/s$$

ESERCITAZIONE N. 3: PARTE 2)

Stima delle portate di piena a partire da osservazioni idrometriche

Per la progettazione di un ponte è necessario stimare la portata al colmo centenaria, cioè corrispondente ad un tempo di ritorno di 100 anni, per una sezione dell'Adda più a monte della sezione di "Fuentes" ($S_F = 2598 \, km^2$), per la quale non esistono misure dirette di portata e che sottende un bacino idrografico di circa $S_A = 2150 \, km^2$.

Si proceda a tale stima tenendo conto dei dati dell'esercizio precedente, che si riferiscono a sezioni che sottendono bacini idrografici simili per ambito climatico e comportamento idrologico.

SVOLGIMENTO

Per stimare la portata nella sezione richiesta si deve ricorrere a metodi empirici. Queste formulazioni risultano utili solo a carattere regionale, ovvero solo se le osservazioni di massima piena vengono eseguite su corsi d'acqua appartenenti ad una regione sufficientemente omogenea dal punto di vista idrologico.

Si seguirà l'approccio della formula di Gherardelli e Marchetti.

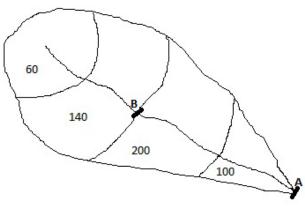
Considerando che la portata di piena centenaria per la sezione di "Fuentes" calcolata nell'esercizio precedente è pari a $Q_{F_{100}}=1433\,$ m³/s, applichiamo la seguente relazione:

$$Q_{A} = q_{A} \cdot S_{A} = Q_{F} \cdot \sqrt{\frac{S_{A}}{S_{F}}}$$

dove:

- Q_F portata nota nella sezione di "Fuentes";
- S_F superficie del bacino che termina con la sezione di "Fuentes";
- S_A superficie del bacino che termina con la sezione considerata;
- Q_A portata che stiamo ricercando.

da cui otteniamo:


$$Q_A = 1433 \cdot \sqrt{\left(\frac{2150}{2598}\right)} = 1304 \, m^3/s$$

ESERCITAZIONE N. 4:

Trasformazione degli afflussi netti in deflussi tramite il modello cinematico

Si consideri un bacino idrografico di 500 ha (Figura 1). Supponendo che le perdite siano complessivamente del 60%, cioè che si possa considerare un coefficiente di deflusso $\phi = 0,4$, si calcolino gli **idrogrammi di piena** derivanti dallo ietogramma (lordo) riportato in Figura 2 nella sezione di chiusura del bacino (Sezione A) e in una sezione più a monte (Sezione B), che sottende un sottobacino di 200 ha.

Il calcolo degli idrogrammi venga fatto con il metodo della corrivazione, tenendo conto delle curve aree tempi dei due bacini riportate in Figura 3.

In tratteggio sono riportate le linee isocorrive, mentre i numeri rappresentano le aree (in ettari) delle diverse zone individuate da tali linee.

Fig. 1: Schema del bacino idrografico.

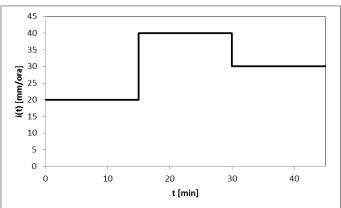


Fig. 2: Ietogramma.

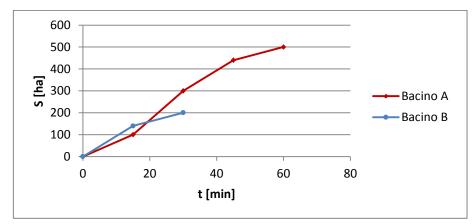


Fig. 3: Curva area-tempi per i bacini A e B.

SVOLGIMENTO

Per costruire l'**idrogramma di piena** conseguente (ossia causato) ad un certo *ietogramma* dato occorre usare un modello di trasformazione afflussi-deflussi.

Una tipologia di modelli particolarmente importante è quella dei *modelli lineari*, in cui la relazione ingresso-uscita è descritta da un'equazione differenziale lineare a coefficienti costanti. La caratteristica più importante di questi modelli è la proporzionalità tra ingresso ed uscita.

La portata uscente è data dal seguente integrale di convoluzione:

$$Q(t) = \int_0^t u(t - \tau) \cdot p(\tau) \, d\tau$$

dove:

- p(t) portata di pioggia netta, pari a $\phi \cdot i(t) \cdot S$, con:

i(t) ietogramma lordo

 ϕ coefficiente di deflusso (supposto cost. durante l'evento)

S superficie del bacino;

- u(t) idrogramma unitario istantaneo (IUH).

Nota. L'idrogramma unitario istantaneno IUH rappresenta la risposta del bacino ad una pioggia unitaria impulsiva (pioggia di volume unitario e di durata infinitesima). La forma dello IUH, cioè della funzione u(t), dipende dal tipo di modello di trasformazione afflussi-deflussi considerato.

Il **modello cinematico** schematizza il bacino come una serie di canali lineari, i quali producono un deflusso Q ritardato nel tempo (ritardo τ) rispetto all'immissione p.

L'IUH è definito in questo modo:

$$u(t) = IUH = \frac{1}{S} \cdot \frac{ds}{dt}$$

con:

- S superficie totale del bacino;
- S = S(t) curva area-tempi.

Ad ogni punto della superficie del bacino imbrifero è possibile associare un tempo di trasferimento alla sezione di chiusura del bacino; questo prende il nome di *tempo di corrivazione*. Le linee isocorrive sono quindi il luogo dei punti di ugual tempo di corrivazione.

Se la durata della pioggia è inferiore al tempo di corrivazione del bacino, allora non tutto il bacino contribuisce ai deflussi.

Con questo modello la massima portata al colmo la si ha quando la pioggia ha durata pari al tempo di corrivazione del bacino, ossia quando contribuisce ai deflussi l'intero bacino, ed in questo caso la portata al colmo è sempre pari alla portata di afflusso ϕiS .

Lo ietogramma lordo fornitoci ci illustra l'andamento dell'intensità di pioggia nel tempo sul bacino.

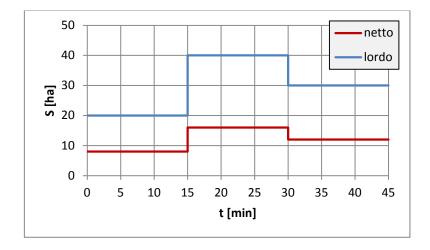
Dal punto di vista teorico, per determinare l'idrogramma Q(t) è necessario risolvere l'integrale di convoluzione, ma questo è possibile solo in rari e semplici casi.

Nota. Occorrerà pertanto procedere per differenze finite, fissando un intervallo di tempo Δt e trasformando l'integrale in una sommatoria:

$$Q(t) = \sum [p \cdot IUH \cdot \Delta t]$$

e approssimando l'IUH alle differenze finite:

$$Q(t) = \sum \left[p \cdot \left(\frac{1}{S_{tot}} \cdot \frac{\Delta S_i}{\Delta t} \right) \cdot \Delta t \right] = \sum \left[(\phi \cdot i \cdot S) \cdot \left(\frac{1}{S_{tot}} \cdot \frac{\Delta S_i}{\Delta t} \right) \cdot \Delta t \right]$$


1) Dalle curve area-tempi relative al bacino A ed al sottobacino B, determiniamo le superfici S in funzione del tempo t:

BACINO A				
t (min)	S (ha)			
0	0			
15	100			
30	300			
45	440			
60	500			

BACINO B			
t (min)	S (ha)		
0	0		
15	140		
30	200		

2) Conoscendo il coefficiente di deflusso ϕ , che è cost. su tutto il bacino, dallo ietogramma lordo ricaviamo lo *ietogramma netto*: questo si riferisce all'intensità di pioggia netta, ossia quella che non si infiltra ma che scorre in superficie formando i deflussi.

t [min]	i(t) [mm/h]	φ	i _n (t) [mm/h]
0	0	0,4	0
15	20	0,4	8
30	40	0,4	16
45	30	0,4	12

3) Determiniamo ora gli IUH dei due bacini, discretizzati per un intervallo di tempo di 15min. Tali valori (adimensionali) indicano in che percentuale ogni sub-area contribuisce alla portata totale del bacino:

$$IUH = \frac{1}{S_{tot}} \cdot \frac{\Delta S_i}{\Delta t}$$

dove:

- ΔS_i superficie della sub-area;
- Δt distanza tra le isocorrive;
- S_{tot} superficie dell'intero bacino;

BACINO A		BACINO B					
t [min]	S [ha]	Δs	IUH [l/min]	t [min]	S [ha]	Δs	IUH [l/min]
0	0	0	0	0	0	0	0
15	100	100	0.0133	15	140	140	0.0466
30	300	200	0.0266	30	200	60	0.02
45	440	140	0.0186	-	-	-	-
60	500	60	0.008	-	-	-	-

4) Calcoliamo la portata di pioggia netta per ogni bacino e relativa ai vari intervalli di tempo:

$$p(t) = \phi \cdot i(t) \cdot S = i_n(t) \cdot S$$

• BACINO A

$$p_1 = 8 \cdot 500 \cdot \frac{1}{360} = 11,111 \, m^3 / s$$

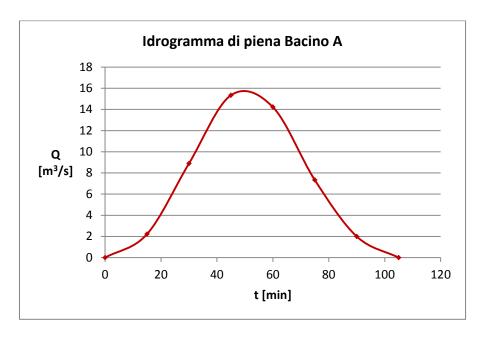
$$p_2 = 16 \cdot 500 \cdot \frac{1}{360} = 22,222 \, m^3 / s$$

$$p_3 = 12 \cdot 500 \cdot \frac{1}{360} = 16,667 \, m^3 / s$$

BACINO B

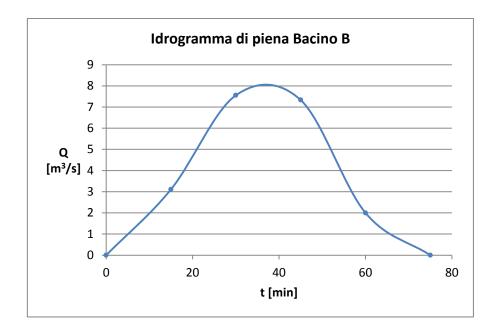
$$p_1 = 8 \cdot 200 \cdot \frac{1}{360} = 4,444 \, m^3 / s$$

$$p_2 = 16 \cdot 200 \cdot \frac{1}{360} = 8,889 \, m^3 / s$$


$$p_3 = 12 \cdot 200 \cdot \frac{1}{360} = 6,667 \, m^3 / s$$

5) Procediamo infine con il calcolo dell'idrogramma di piena nei due casi:

$$Q(t) = \sum \left[(\phi \cdot i \cdot S) \cdot \left(\frac{1}{S_{tot}} \cdot \frac{\Delta S_i}{\Delta t} \right) \cdot \Delta t \right]$$


BACINO A

	Sub-area	100	200	140	60	0 (1)
	IUH	0,01333	0,02667	0,01867	0,00800	Q _A (t)
	0	0	0	0	0	0
	15	2,222				2,222
	30	4,444	4,444			8,889
t	45	3,333	8,889	3,111		15,333
(∆t=15 min)	60		6,667	6,222	1,333	14,222
	75			4,667	2,667	7,333
	90				2,000	2,000
	105	0	0	0	0	0

• BACINO B

	Sub-area	140	60	0 (4)
	IUH	0,04667	0,02000	Q _B (t)
	0	0	0	0
	15	3,111		3,111
t	30	6,222	1,333	7,556
(∆t=15 min)	45	4,667	2,667	7,333
	60		2,000	2,000
	75	0	0	0

Nota. Una volta determinati gli idrogrammi di piena è importante verificare che gli stessi abbiano tempo di base pari alla somma tra il tempo di corrivazione del bacino e la durata dell'evento meteorico.

- nel caso del bacino A l'idrogramma deve avere durata pari a 60 + 45 = 105 min;
- nel caso del bacino B l'idrogramma deve avere durata pari a 30 + 45 = 75 min;

Inoltre possiamo osservare che essendo pari a 45 min la durata della pioggia:

- nel caso del bacino A non contribuisce al deflusso tutta l'area del bacino;
- nel caso del bacino B invece tutta l'area contribuisce al deflusso.

ESERCITAZIONE N. 5:

Progetto di un acquedotto

L'acquedotto esterno, il cui tracciato è rappresentato sulla cartografia allegata in scala 1:25000, è alimentato da una sorgente posta alla quota di 568 m s.l.m. e deve alimentare a sua volta due serbatoi per uso potabile, il primo dei quali a servizio del Comune di Fara in Sabina.

Si dimensioni la rete di adduzione tenendo conto che in corrispondenza della diramazione si deve realizzare un partitore a superficie libera, posto alla quota di 515 m s.l.m..

Al fine di determinare la portata di progetto si faccia riferimento alle indicazioni e alle proiezioni al 2028 di popolazione e di dotazione idrica, riportate nel Piano d'Ambito Territoriale Ottimale della Regione Lazio per la Provincia di Rieti, A.T.O. n°3.

Si assumano inoltre le stesse indicazioni di progetto per il calcolo della portata da addurre al serbatoio 2, ipotizzato a servizio di un comune con popolazione residente e fluttuante pari rispettivamente a 5000 e 1800 abitanti.

Ai fini del dimensionamento si richiede di:

- calcolare le portate di progetto e i volumi di dimensionamento dei serbatoi di recapito;
- tracciare il profilo altimetrico dell'acquedotto, posizionando le apparecchiature di scarico e di evacuazione e rientro dell'aria in condotta;
- determinare i diametri commerciali delle tubazioni in acciaio e, ove necessario, ubicare le valvole regolatrici di carico da usare a tubi nuovi, determinata la perdita di carico che devono produrre.

Per il calcolo della condotta di adduzione con sollevamento meccanico si adotti il criterio della massima economia, nell'ipotesi che il sollevamento sia continuo nelle 24 ore, noti il costo dell'energia elettrica, il costo delle tubazioni, il tasso di capitalizzazione ed il rendimento delle pompe.

Abitanti Fara in Sabina (Comune 1) A.T.O. n°3 Lazio	Residenti N_R	12681
Aditanti Fara ili Sadina (Colliune 1) A.T.O. il 3 Lazio	Fluttuanti N_F	4566
Deterione idrice [I/sh d] A T O nº2 I grio	Residenti d_R	300
Dotazione idrica [l/ab.d] A.T.O. n°3 Lazio	Fluttuanti d_F	200
Abitanti Comune 2	Residenti N_R	5000
Abitanti Condune 2	Fluttuanti N_F	1800
	Sorgente H_S	
		568
Quota [m s.l.m.]	Partitore a superficie libera H_D	515
	Serbatoio 1 H_I (Fara in Sabina)	512
	Serbatoio 2 H ₂	700

Coefficiente di scabrezza di Manning (n) TUBI NUOVI	0.010
Coefficiente di scabrezza di Manning (n) TUBI USATI	0.016
Costo dell'energia elettrica K_e [Euro/Kwh]	0.20
Costo delle tubazioni in acciaio K_t [Euro/Kg]	1.50
Tasso di capitalizzazione $ au$	0.08
Rendimento delle pompe η	0.60

Diametri commerciali	Peso [kg/m]
tubi in acciaio D [m]	$P = 176.15D^2 + 88.911D$
0.050	4.89
0.100	10.65
0.150	17.30
0.200	24.83
0.250	33.24
0.300	42.53
0.350	52.70
0.400	63.75
0.450	75.68
0.500	88.49

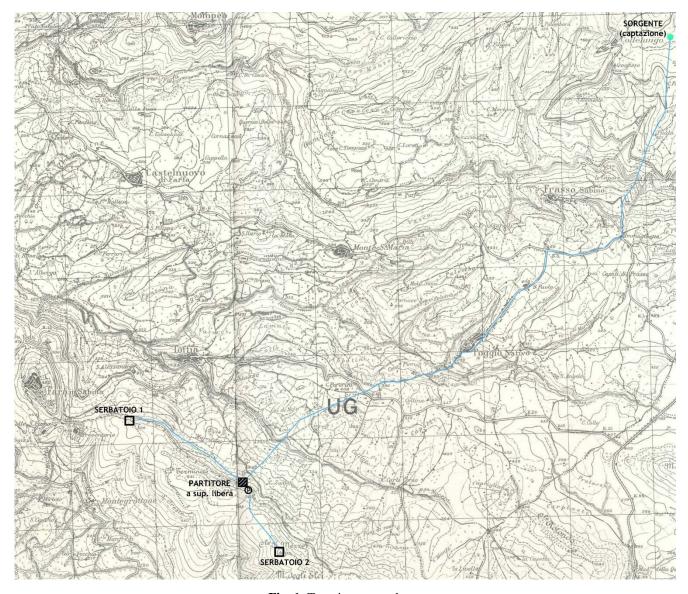


Fig. 1: Tracciato acquedotto.

SVOLGIMENTO

1. Calcolo della portata e dei volumi di progetto.

Per entrambi i centri serviti si procede al calcolo della portata di progetto e dei volumi dei serbatoi di recapito.

- Il Piano d'Ambito A.T.O. n°3 riporta la relazione per la stima della portata media annua, tenendo conto che la popolazione fluttuante è presente per un periodo di due mesi l'anno:

$$\overline{Q} = \frac{N_R d_R + \frac{2}{12} N_F d_F}{86400} \left[\frac{l}{s} \right]$$

$$Q_{m1} = \frac{(12681 \cdot 300) + (4566 \cdot 200) \cdot \frac{2}{12}}{86400} = 45.8 \ l/s$$

$$Q_{m2} = \frac{(5000 \cdot 300) + (1800 \cdot 200) \cdot \frac{2}{12}}{86400} = 18.1 \ l/s$$

Si assume come portata di progetto la portata del giorno dei massimi consumi, stimata dal Piano d'Ambito coincidente con la portata del mese dei massimi consumi:

$$Q_{g \text{ max}} = \frac{N_R d_R + N_F d_F}{86400} \left[\frac{1}{s} \right]$$

Q _{gmax1} =	54,6	l/s	
Q _{gmax2} =	21,5	I/s	

I corrispondenti volumi saranno:

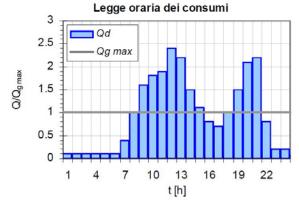
$$V_{gmax} = \frac{Q_{gmax} \ 86400}{1000}$$

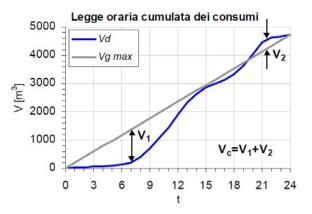
17	$=\frac{Q_{g}}{g}$	max 86400
ν ε	$max = \frac{c g}{c}$	1000
V _{gmax1} =	4717,5	m ³
V _{gmax2} =	1860,0	m ³

La portata del giorno dei massimi consumi, adottata come portata di progetto, per il tratto sorgente-partitore, sarà:

$$Q_{gmax} = 54,60 + 21,53 =$$
76,1 $l/s \implies V_{gmax} = 4717,5 + 1860,0 =$ **6577,5** mc

In base al coefficiente di punta adottato:


$$a_g = \frac{Q_{gmax}}{\overline{Q}} = \frac{76,1}{63,9} = 1,19$$


il Piano d'Ambito riporta inoltre il valore del **volume di compenso** per il serbatoio, pari al 40% del volume del giorno dei massimi consumi, ovvero:

$$V_C = 0.4 \cdot V_{gmax}$$
 $V_{C1} = 1887.0 \text{ m}^3$
 $V_{C2} = 744.0 \text{ m}^3$

Osservazione:

Il volume di compenso dei serbatoi può essere calcolato per via analitica nota la portata in arrivo dall'adduttrice, assunta costante e pari alla portata del giorno dei massimi consumi Q_{gmax} , e la variazione giornaliera delle portate richieste dalle utenze Q_d . Durante i periodi in cui la portata in ingresso al serbatoio è maggiore di quella richiesta, il serbatoio si va riempiendo, mentre, quando è maggiore la portata in uscita, si va vuotando. La capacità di compenso del serbatoio è data allora dalla somma dei massimi scostamenti, positivo e negativo, fra volume affluito (V_{gmax}) e defluito (V_d) dal serbatoio $V_C = V_I + V_2$

Esempio di calcolo per il serbatoio 1:

t	Q _d /Q _{gmax}	Q_d	V_{defluito}	V _{affluito}	V _c
0	0	0	0	0	0
1	0,1	5,46	19,66	196,56	-176,91
2	0,1	5,46	39,31	393,13	-353,81
3	0,1	5,46	58,97	589,69	-530,72
4	0,1	5,46	78,63	786,25	-707,63
5	0,1	5,46	98,28	982,81	-884,53
6	0,1	5,46	117,94	1179,38	-1061,44
7	0,4	21,84	196,56	1375,94	-1179,38
8	1	54,60	393,13	1572,50	-1179,38
9	1,6	87,36	707,63	1769,06	-1061,44
10	1,8	98,28	1061,44	1965,63	-904,19
11	1,9	103,74	1434,91	2162,19	-727,28
12	2,4	131,04	1906,66	2358,75	-452,09
13	2,2	120,12	2339,09	2555,31	-216,22
14	1,5	81,90	2633,94	2751,88	-117,94
15	1,1	60,06	2850,16	2948,44	-98,28
16	0,8	43,68	3007,41	3145,00	-137,59
17	0,7	38,22	3145,00	3341,56	-196,56
18	1	54,60	3341,56	3538,13	-196,56
19	1,5	81,90	3636,41	3734,69	-98,28
20	2,1	114,66	4049,19	3931,25	117,94
21	2,2	120,12	4481,63	4127,81	353,81
22	0,8	43,68	4638,88	4324,38	314,50
23	0,2	10,92	4678,19	4520,94	157,25
24	0,2	10,92	4717,50	4717,50	0,00
D/	ATI				

V_{C1} = **1533,2** mc

Dove:

Volume defluito:

$$V_{defluito} = (Q_d/1000) \cdot 3600 \qquad [mc]$$

esempio per t=4:
$$V_{defluito,4} = [(Q_{d,4}/1000) \cdot 3600] + V_{defluito,3}$$
 [mc]

Volume affluito:

$$V_{affluito} = (V_{g,max}/24) \cdot t$$
 [mc]
esempio per t=4: $V_{affluito,4} = (V_{g,max}/24) \cdot t_4$ [mc]

Poiché il volume di compenso calcolato per via analitica è minore di quello calcolato come il 40% del volume del giorno dei massimi consumi, si prende a riferimento proprio quest'ultimo.

- Si calcola la **capacità di riserva** in base a 10 ore di funzionamento con portata pari a quella del giorno dei massimi consumi:

$$V_R = \frac{10}{24} Q_{g \text{ max}} \frac{86400}{1000}$$

V _{R1} =	1965,6	m ³
V _{R2} =	775,0	m ³

- Si calcola la **capacità antincendio** (V_A) in base a 5 ore di funzionamento a portata $Q_i = 6\sqrt{N_R}$ (*Conti*), dove N_R è il numero di abitanti residenti espressi in migliaia:

$$V_A = \frac{5}{24} Q_i = 108 \sqrt{N_R}$$

V _{A1} =	384,6	m ³
V _{A2} =	241,5	m ³

- Si calcolano i **volumi dei serbatoi**, non considerando quello antincendio, in quanto risulta essere trascurabile rispetto a quello di riserva:

$$V_{S1} = V_{C1} + V_{R1}$$

$$V_{S2} = V_{C2} + V_{R2}$$

V _{S1} =	3852,6	m ³
V _{S2} =	1519,0	m ³

2. Dimensionamento condotta di adduzione a gravità SORGENTE-PARTITORE

Per il tratto in esame con funzionamento a gravità, dalla sorgente al partitore, per cui è stata già calcolata la portata da addurre pari a $Q_{gmax} = 76.1 \ l/s$, deve essere effettuato il dimensionamento della condotta, seguendo il procedimento di seguito riportato.

I dati di progetto sono:

quota sorgente	568	m
quota partitore	515	m
portata di progetto	0,0761	mc/s
coeff. manning tubi usati	0,016	
coeff. manning tubi nuovi	0,01	
distanza sorgente - partitore	8312,66	

A. Calcolo a tubi usati

Nota la portata di progetto e il profilo altimetrico, occorre anzitutto determinare il **diametro teorico** della tubazione necessario per alimentare il recapito mediante il *calcolo delle perdite di carico a tubi usati* (situazione nel tempo più gravosa).

Si assume per il calcolo dei diametri come lunghezza effettiva delle tubazioni la proiezione sull'orizzontale.

Per il calcolo delle perdite di carico si adopera la formula di Chezy, valida per moti assolutamente turbolenti:

$$Q = \Omega \cdot \chi \cdot \sqrt{R \cdot I}$$

dove:

 Ω è l'area della sezione bagnata;

χ è il parametro di resistenza di Chezy;

J è la pendenza piezometrica.

Per il parametro di resistenza si utilizzi l'espressione di Manning:

$$\chi = \frac{1}{n} R^{\frac{1}{6}}$$

avendo indicato con n il coefficiente di scabrezza di Manning e con R il raggio idraulico della sezione, pari a:

$$R = \frac{\Omega}{C} \rightarrow sez.circolare R = \frac{D}{4}$$

dove con C si è indicato il contorno bagnato della sezione e con D il diametro della condotta.

Eseguendo una serie di sostituzioni ricaviamo il raggio idraulico dalla formula di Chezy:

$$Q = \frac{4\pi}{n} \cdot R^{\frac{8}{3}} \cdot J^{\frac{1}{2}}$$

da cui, esplicitando R, si ottiene:

$$R = \left(\frac{n \cdot Q}{4\pi \cdot J^{\frac{1}{2}}}\right)^{\frac{3}{8}}$$

Infine, nell'ipotesi che la tubazione abbia un diametro D costante e che quindi sia costante la pendenza piezometrica, pari a:

$$J = \frac{\Delta H}{I_{\bullet}}$$

dove ΔH è il dislivello tra sorgente e serbatoio e L è la lunghezza della tubazione, si determina, con il coefficiente di Manning a tubi usati, il raggio idraulico e quindi il diametro teorico D_t della tubazione:

$$D_t = 4R$$

- Calcolo della **cadente piezometrica**:

$$J = \frac{\Delta H}{L} = \frac{568 - 515}{8312.66} = 0,00637$$

- Calcolo del **raggio idraulico** (tubi usati):

$$R = \left(\frac{0.016 \cdot 0.0761}{4\pi \cdot 0.00637^{\frac{1}{2}}}\right)^{\frac{3}{8}} = 0.08065 \ [m]$$

- Calcolo del **diametro teorico**:

$$D_t = 4 \cdot 0.08065 = 0.323$$
 [m]

Nota. Il diametro così ottenuto in generale non è in commercio, occorre quindi spezzare la tubazione in due tratti, di lunghezze L_1 e L_2 incognite, con due diametri commerciali D_1 e D_2 immediatamente inferiori e superiori al diametro teorico calcolato.

- Si scelgono quindi due **diametri commerciali**, uno immediatamente superiore ed uno immediatamente inferiore a quello teorico calcolato, ossia:

$$D_1 = 0.30 m$$

 $D_2 = 0.35 m$

Dalla formula di Chezy esplicitiamo la cadente piezometrica:

$$J = \frac{n^2}{16\pi^2 \cdot R^{\frac{16}{3}}} \cdot Q^2 = \Upsilon(D) \cdot Q^2$$

dove si è posto:

$$\Upsilon(D) = \frac{n^2}{16\pi^2 \cdot R^{\frac{16}{3}}}$$

- Da cui ricaviamo le **cadenti piezometriche** J_1 e J_2 per i due tratti (sempre con il coefficiente di Manning a *tubi usati*):

$$J_{1} = \Upsilon(D_{1}) \cdot Q^{2}$$

$$J_{1} = \frac{0,016^{2}}{16\pi^{2} \cdot 0,075^{\frac{16}{3}}} \cdot 0,0761^{2} = 1,61992 \cdot 0,0761^{2} = 0,00938$$

$$J_{2} = \Upsilon(D_{2}) \cdot Q^{2}$$

$$J_{2} = \frac{0,016^{2}}{16\pi^{2} \cdot 0.0875^{\frac{16}{3}}} \cdot 0,0761^{2} = 0,71194 \cdot 0,0761^{2} = 0,00412$$

- Determiniamo ora le **lunghezze dei due tratti** L_1 e L_2 imponendo che la perdita di carico totale sia sempre ΔH e che la lunghezza totale sia sempre L:

$$\begin{cases} \Delta H = J \cdot L = J_1 \cdot L_1 + J_2 \cdot L_2 \\ L = L_1 + L_2 \end{cases}$$

Da cui sviluppando otteniamo:

$$\begin{cases} L_1 = \frac{\frac{\Delta H}{Q^2} - L \cdot \Upsilon(D_2)}{\Upsilon(D_1) - \Upsilon(D_2)} \\ L_2 = L - L_1 \end{cases} \implies \begin{cases} L_1 = \frac{\frac{53}{0.0761^2} - 8312,66 \cdot 0,71194}{1,61992 - 0,71194} = 3561,4 \ m \\ L_2 = 8312,66 - 3561,4 = 4751,3 \ m \end{cases}$$

Riepilogo dati a tubi usati:

	L [m]	D [cm]	J
Tratto 1	3561,4	30	0,00938
Tratto 2	4751,3	35	0,00412

B. Calcolo a tubi nuovi

Ciò fatto si calcolano le *pendenze piezometriche a tubi nuovi* (utilizzando il coefficiente di Manning a tubi nuovi) e si posiziona la valvola regolatrice di carico nel punto in cui la tubazione cambia il proprio diametro.

- Indicando con J'_1 e J'_2 le pendenze piezometriche a tubi nuovi:

$$I'_1 = \Upsilon'(D_1) \cdot Q^2$$

$$J'_{1} = \frac{0.01^{2}}{16\pi^{2} \cdot 0.075^{\frac{16}{3}}} \cdot 0.0761^{2} = 0.63278 \cdot 0.0761^{2} = 0.00366$$

$$J'_{2} = \Upsilon'(D_{2}) \cdot Q^{2}$$

$$J'_{2} = \frac{0.01^{2}}{16\pi^{2} \cdot 0.0875^{\frac{16}{3}}} \cdot 0.0761^{2} = 0.27810 \cdot 0.0761^{2} = 0.00161$$

Riepilogo dati a tubi nuovi:

	L [m]	D [cm]	J
Tratto 1	3561,4	30	0,00366
Tratto 2	4751,3	35	0,00161

La **perdita di carico** nella valvola regolatrice deve essere:

$$h_V = (J_1 - J'_1)L_1 + (J_2 - J'_2)L_2$$

da cui risulta:

$$h_V = (0,00938 - 0,00366)3561,4 + (0,00412 - 0,00161)4751,3$$

 $h_V = 32,3 \ m$

3. Dimensionamento condotta di adduzione a gravità PARTITORE-SERBATOIO1

Anche in questo caso, per tale tratto, valgono le stesse relazioni viste in precedenza in quanto il funzionamento della condotta è lo stesso, ossia a gravità.

I dati di progetto sono:

quota partitore	515	m
quota serbatoio 1	512	m
portata di progetto	0,0546	mc/s
coeff. manning tubi usati	0,016	
coeff. manning tubi nuovi	0,01	
distanza sorgente - partitore	1564,8	

A. Calcolo a tubi usati

- Calcolo della **cadente piezometrica**:

$$J = \frac{515 - 512}{1564,8} = 0,00192$$

- Calcolo del **raggio idraulico** (tubi usati):

$$R = \left(\frac{0,016 \cdot 0,0546}{4\pi \cdot 0,00192^{\frac{1}{2}}}\right)^{\frac{3}{8}} = 0,08918 \ [m]$$

- Calcolo del diametro teorico:

$$D_t = 4 \cdot 0.08918 = 0.357 [m]$$

Scelta diametri commerciali:

$$D_1 = 0.35 m$$

 $D_2 = 0.40 m$

- Determinazione **cadenti piezometriche** J_1 e J_2 per i due tratti (sempre con il coefficiente di Manning a *tubi usati*):

$$J_1 = \frac{0.016^2}{16\pi^2 \cdot 0.0875^{\frac{16}{3}}} \cdot 0.0546^2 = 0.71194 \cdot 0.0546^2 = 0.00212$$

$$J_2 = \frac{0.016^2}{16\pi^2 \cdot 0.1^{\frac{16}{3}}} \cdot 0.0546^2 = 0.34926 \cdot 0.0546^2 = 0.00104$$

- Determinazione delle **lunghezze dei due tratti** L_1 e L_2 :

$$\begin{cases} L_1 = \frac{3}{0,0546^2} - 1564,8 \cdot 0,34926 \\ L_2 = 1564,8 - 1267,8 = 297,0 \ m \end{cases} = 1267,8 \ m$$

Riepilogo dati a tubi usati:

	L	D	J
	[m]	[cm]	,
Tratto 1	1267,8	35	0,00212
Tratto 2	297,0	40	0,00104

B. Calcolo a tubi nuovi

Utilizzando ora il coefficiente di Manning a *tubi nuovi*, si calcolano *cadenti piezometriche* e perdita di carico della valvola regolatrice, che anche in questo caso viene posta nel punto in cui la condotta cambia diametro.

- Indicando con J'_1 e J'_2 le pendenze piezometriche a tubi nuovi:

$$J'_{1} = \frac{0.01^{2}}{16\pi^{2} \cdot 0.0875^{\frac{16}{3}}} \cdot 0.0546^{2} = 0.27810 \cdot 0.0546^{2} = 0.00083$$

$$J'_{2} = \frac{0.01^{2}}{16\pi^{2} \cdot 0.13643 \cdot 0.0546^{2}} = 0.13643 \cdot 0.0546^{2} = 0.00041$$

Riepilogo dati a tubi nuovi:

	L [m]	D [cm]	J
Tratto 1	1267,8	35	0,00083
Tratto 2	297,0	40	0,00041

La **perdita di carico** nella valvola regolatrice deve essere:

$$h_V = (J_1 - J'_1)L_1 + (J_2 - J'_2)L_2$$

da cui risulta:

$$h_V = (0,00212 - 0,00083)1267,8 + (0,00104 - 0,00041)297,0$$

 $h_V = 1,82 \ m$

4. Dimensionamento condotta di adduzione con sollevamento meccanico PARTITORE-SERBATOIO2

Per il dimensionamento del tratto di adduzione con sollevamento meccanico, dal partitore a superficie libera al serbatoio 2, si procede adottando un criterio di massima economia.

Il costo annuo del sollevamento, che è proporzionale alla potenza necessaria per il sollevamento, a sua volta proporzionale alla pendenza piezometrica J, è tanto minore quanto maggiore è il diametro della tubazione. Contrariamente il costo della condotta è tanto minore quanto minore è il diametro, cioè quanto maggiore è la pendenza piezometrica J.

Il problema può essere allora reso determinato imponendo la scelta della soluzione di minimo costo complessivo, pari alla somma del *costo di sollevamento* e del *costo della condotta*, in funzione del diametro adottato o, in modo equivalente, della pendenza piezometrica *J*.

A. COSTO IMPIANTO DI SOLLEVAMENTO

Il costo dell'impianto di sollevamento è dato dall'espressione:

$$K_0 = \frac{\epsilon g Q H t}{n \tau}$$

dove:

ε costo dell'energia elettrica [€Kwh]

g accelerazione di gravità [m/s²]

Q portata di progetto (Q_{gmax2}) [mc/s]

H prevalenza dell'impianto [m]

t tempo di funzionamento dell'impianto [ore/anno]

η rendimento pompa

τ tasso di capitalizzazione, comprensivo dei tassi di interesse del capitale, dell'ammortamento e della manutenzione

Per quanto concerne i tempo di funzionamento dell'impianto, si considera che questo funzioni 24h/24h per 365 giorni.

Per quanto riguarda la prevalenza dell'impianto questa è data da:

$$H = h_a + JL$$

con:

 h_g prevalenza geodetica, pari al dislivello tra la quota di arrivo in serbatoio e di presa alla sorgente

I pendenza piezometrica nella condotta

L distanza tra sorgente e serbatoio terminale (assunta sempre pari alla distanza sull'orizzontale)

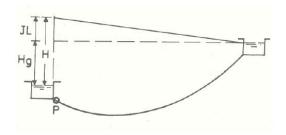


Figura 2. Schema di condotta funzionante a sollevamento meccanico.

La prevalenza geodetica può non essere tenuta in considerazione nella soluzione del problema di minimo costo in quanto il costo del sollevamento relativo al dislivello geodetico deve essere comunque sostenuto, indipendentemente dal valore del diametro commerciale adottato.

Quindi si avrà:

$$H = IL$$

La cadente piezometrica come al solito sarà pari a:

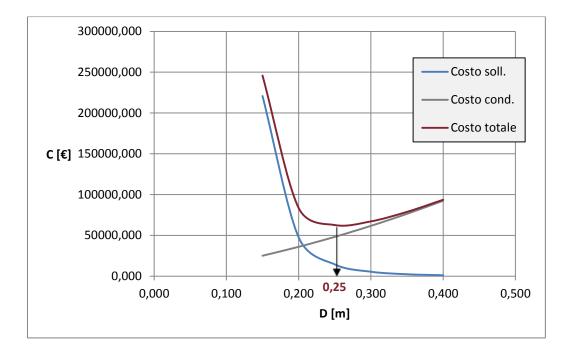
$$J = \frac{n^2}{16\pi^2 \cdot R^{\frac{16}{3}}} \cdot Q^2 = \Upsilon(D) \cdot Q^2$$

B. COSTO DELLA CONDOTTA

Il *costo della condotta C_i*, invece, può essere calcolato moltiplicando il suo peso P per il costo dei tubi al kg, avendo indicato nella tabella sotto riportata il peso a metro lineare dei tubi in acciaio in funzione del diametro D_i .

Diametri commerciali	Peso [kg/m]
tubi in acciaio D [m]	$P = 176.15D^2 + 88.911D$
0,05	4,89
0,10	10,65
0,15	17,30
0,20	24,83
0,25	33,24
0,30	42,53
0,35	52,70
0,40	63,75
0,45	75,68
0,50	88,49

Soluzione


Rappresentando graficamente in funzione del diametro commerciale (o della corrispondente pendenza piezometrica J), il costo della condotta $C_i(D)$, il costo del sollevamento $K_0(D)$ ed il costo totale $C_T(D) = C_i(D) + K_0(D)$ si individua il valore di D (e quindi di J) per cui il costo totale è minimo, e per questo valore si dimensiona la condotta.

I dati di progetto sono:

Quota partitore a superficie libera	515	m
Quota serbatoio terminale	700	m
Portata di progetto	0,0215	mc/s
Coeff. Manning tubi usati	0,016	
Distanza Partitore Serbatoio	946,43	m
Distanza E Partitore Serbatoio	967,23	m
Costo energia elettrica	0,2	€/Kwh
Costo tubazione acciaio	1,5	€/kg
Tasso capitalizzazione	0,08	
Rendimento delle pompe	0,6	
h giornaliere di funzionamento	24	

In base alle considerazioni fatte si ottiene:

D		Н	Costo soll. K ₀	Peso	Costo cond. C _i	Costo tot. C _T
[m]	,	[m]	[€]	[kg/m]	[€]	[€]
0,150	0,030	28,647	220819,133	17,300	25099,655	245918,787
0,200	0,007	6,176	47609,845	24,828	36021,870	83631,715
0,250	0,002	1,879	14482,494	33,237	48221,917	62704,411
0,300	0,001	0,711	5477,008	42,527	61699,795	67176,803
0,350	0,000	0,312	2407,098	52,697	76455,505	78862,604
0,400	0,000	0,153	1180,874	63,748	92489,047	93669,921

Dal calcolo effettuato risulta quindi che la soluzione di minor costo per la quale viene dimensionata la condotta partitore-sebatoio 2, è quella che si ha per:

$$D = 25 \text{ cm}$$

5. Controllo delle velocità

Controlliamo infine che la velocità dell'acqua nelle condotte con adduzione a gravità e a sollevamento meccanico, calcolata come:

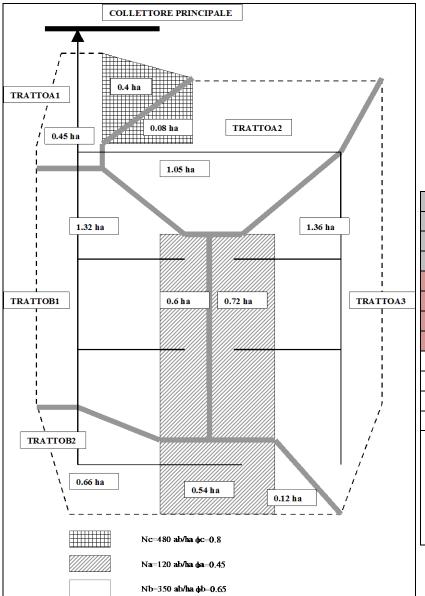
$$V = Q/\Omega$$

risulti compresa tra 0,3 e 1,5 m/s.

- a. Tratto sorgente-partitore
- b. Tratto partitore-serbatoio1 c. Tratto partitore -serbatoio2

	α	D	٧
	[mc/s]	[m]	[m/s]
Tratto 1	0,0761	0,30	1,08
Tratto 2	0,0761	0,35	0,79

	Q	D	V
	[mc/s]	[m]	[m/s]
Tratto 1	0,0546	0,35	0,57
Tratto 2	0,0546	0,40	0,43


	Q	D	V
	[mc/s]	[m]	[m/s]
Tratto 1	0,0215	0,25	0,44

ESERCITAZIONE N. 6:

Dimensionamento delle canalizzazioni di una fognatura mista

Si dimensionino i canali della fognatura mista rappresentata in planimetria con il *metodo cinematico* (o del *tempo di corrivazione*). Calcolare in particolare i tratti della rete principale 1, 2 e 3 della fognatura A ed i tratti 1 e 2 della B, i cui profili sono allegati nell'usuale rappresentazione in scala deformata delle ordinate.

L'area servita dalla fogna A e dalle fogne in essa confluenti, tra cui la B, è composta di tre zone a diversa urbanizzazione. Siano assegnate le densità di abitanti, le dotazioni idriche e i coefficienti di afflusso in fogna. Sia inoltre assegnata la curva di caso critico delle precipitazioni ed il tempo medio di afflusso in fogna. Si assume anche un coefficiente di dispersione per le portate distribuite ed un coefficiente di punta per le portate nere.

Densità di popolazione											
N _a	120	ab/ha									
N _b	350	ab/ha									
N _c	480	ab/ha									
Coefficienti di afflusso in fogna											
φ _a	0,45										
ϕ_{b}	0,65										
φ _c	0,80										
Dotazione	idrica <i>d</i>	330 l/ab g									
Tempo m	edio di affl	usso in fogna t ₀ =10 min									
Coefficien	te di punta	a <i>K</i> =1,7									
Coefficien	te di dispe	rsione <i>f</i> =0,3									
Coefficiente di dispersione f =0,3 Curva di caso critico da adottare: $i = 0.04 \cdot t^{-0.7} [m/h]$											

Fig. 1: Planimetria con schema fognario.

SVOLGIMENTO

Il problema della progettazione di una fognatura è articolato sostanzialmente in due fasi principali: il calcolo delle portate ed il dimensionamento dei canali.

Il presente tema propone il dimensionamento di una fognatura mista. Tale opera è finalizzata alla captazione ed al trasporto delle acque bianche (meteoriche e di lavaggio) e di quelle nere. E' quindi necessario calcolare per ciascun tratto di fognatura la quota parte di acque nere e di acque di pioggia da smaltire, in funzione dei dati assegnati per il progetto.

1. CALCOLO DELLE PORTATE

A. PORTATE NERE

Le portate nere vengono stimate sulla base della dotazione idrica addotta. Essendo questa data in funzione del numero degli abitanti ed essendo il territorio diversamente urbanizzato, si procederà suddividendo il calcolo relativamente alle varie aree.

- Per ogni tratto di ogni fogna (A e B), vengono determinate le aree che vi affluiscono;
- Si determinano per ogni area il numero degli utenti moltiplicando la stessa per la densità di popolazione corrispondente;
- Il calcolo delle portate nere viene effettuato stimando la quantità di acqua distribuita sull'area in esame aumentata proporzionalmente ad un coefficiente di punta per tener conto delle possibili situazioni di simultaneità nell'utenza:

$$Q_N = K \frac{(N_i \cdot A_i \cdot d)(1-f)}{86400}$$
 [l/s]

dove:

 A_i estensione dell'area in ettari;

 N_i densità di popolazione;

d dotazione idrica;

f coefficiente di dispersione.

	Tuette	Auga for all		Portate nere [I/s]							
	Tratto	Area [mq]	N	N*A	N*A*d*(1-f)	Q _N =Q _{media} *K					
		5400	0,012	64,8	0,1733	0,2945					
	2	7800	0,035	273	0,7299	1,2408					
В		13200		337,8	0,9031	1,5353					
В		6000	0,012	72	0,1925	0,3273					
	1	13200	0,035	462	1,2352	2,0999					
		19200		534	1,4277	2,4271					
		7200	0,012	86,4	0,2310	0,3927					
	3	13600	0,035	476	1,2726	2,1635					
		20800		562,4	1,5036	2,5562					
		800	0,048	38,4	0,1027	0,1745					
Α	2	10500	0,035	367,5	0,9826	1,6703					
		11300		405,9	1,0852	1,8449					
		4000	0,048	192	0,5133	0,8727					
	1	4500	0,035	157,5	0,4211	0,7159					
		8500		349,5	0,9344	1,5885					

Ragionando in maniera cumulativa per tratti confluenti riordiniamo la tabella:

			Portate nere [I/s]					
	Tratto	Tratti confl.	А	Q _{N media}	Q _N =Q _{media} *K			
	2	B2	13200	0,9031	1,5353			
В		B2	13200	0,9031	1,5353			
D	1	B1	19200	1,4277	2,4271			
				2,3309	3,9625			
	3 A3		20800	1,5036	2,5562			
		A3	20800	1,5036	2,5562			
	2	2 A2		1,0852	1,8449			
				2,5889	4,4011			
Α		A3	20800	1,5036	2,5562			
A		A2	11300	1,0852	1,8449			
	1	A1	8500	0,9344	1,5885			
	1	B2	13200	0,9031	1,5353			
		B1	19200	1,4277	2,4271			
			73000	5,8541	9,9520			

B. PORTATE BIANCHE

Per la determinazione della portata dell'afflusso meteorico si utilizza il metodo cinematico:

$$Q_B = \frac{(\phi_i \cdot A_i \cdot i)}{3600} \quad [mc/s]$$

dove:

A_i estensione dell'area in m²

- i intensità di precipitazione della pioggia di durata pari al tempo di corrivazione del bacino. Pertanto, sulla base della curva di caso critico data si assume: $i = 0.04 \left(\frac{t_c}{3600}\right)^{-0.7}$
- t_c tempo di corrivazione in secondi pari a $t_0 + t_i$
- t₀ è il tempo che l'acqua impiega per arrivare all'inizio del tratto di fognatura in calcolo dal punto ideologicamente più lontano del bacino (tempo di ruscellamento);
- t_i è il tempo che l'acqua impiega a percorrere il tratto in esame. Il tempo di vettoriamento entro il tratto di canalizzazione lungo L percorso in condizioni di moto uniforme dalla portata Q con velocità media V è pari a: $t_i = L/V$;

Riportiamo ora in una prima tabella i singoli collettori con i sottobacini afferenti:

	Tuette	Avoc [mail	Portate pluviali			
	Tratto	Area [mq]	φ	φ*A [mq]		
		5400	0,45	2430		
	2	7800	0,65	5070		
В		13200		7500		
D		6000	0,45	2700		
	1	13200	0,65	8580		
		19200		11280		

		7200	0,45	3240
	3	13600	0,65	8840
		20800		12080
		800	0,8	640
Α	2	10500	0,65	6825
		11300		7465
		4000	0,8	3200
	1	4500	0,65	2925
		8500		6125

Per completare la tabella bisogna moltiplicare per l'intensità di pioggia. Il problema a questo punto è rappresentato dal fatto che l'intensità di pioggia dipende dal tempo di corrivazione, il quale a sua volta dipende da t_i , che dipende dalla velocità in fogna, la quale però è funzione della portata stessa!

Nota. Per via di queste reciproche dipendenze, per il calcolo della portata si rende necessario un calcolo iterativo ipotizzando inizialmente una velocità media del flusso in fogna (attraverso la quale si calcola il tempo di corrivazione) e verificando poi la convergenza.

Per verificare la convergenza tra la velocità ipotizzata e quella effettiva, quest'ultima verrà calcolata ricorrendo alla formula di "Chezy", la quale richiede però la conoscenza della sezione della canalizzazione.

Tale processo iterativo verrà quindi eseguito contestualmente al dimensionamento degli spechi.

La velocità media del flusso in fogna deve essere sufficientemente elevata in modo tale da evitare fenomeni di sedimentazione, ma allo stesso tempo non troppo elevata per evitare fenomeni di erosione degli spechi e aumento delle sollecitazioni. Come valori limite si possono assumere i seguenti:

$$0.5 < U < 4 \, m/s$$

Ipotizziamo pertanto una velocità iniziale di: 2 m/s.

Nella tabella seguente riportiamo il calcolo delle portate pluviali di primo tentativo:

Fogna	Tratto	Σ(φ*Α)	L [m]	U _{ipot.} [m/s]	t ₀ [s]	t _i [s]	t _c [s]	i [m/s]	Q _B [mc/s]
В	2	7500	190,00	00 2,00 600		95,00	695,00 3,51 E-5		0,2635
	1	18780	140,00	2,00	600	600 57,72 736,07		3,38 E-5	0,6348
	3	12080	200,00	2,00	600	100,00	700,00	3,50 E-5	0,4228
Α	2	19545	180,00	2,00	600	75,36	759,10	3,30 E-5	0,6450
	1	44450	120,00	2,00	600	60,00	1558,56	2,00 E-5	0,8890

Facendo ora un confronto tra le portate nere e quelle bianche:

Fogna	Tratto	Q _B [mc/s]			
В	2	0,0015353	0,2635		
Б	1	0,0039625	0,6348		
	3	0,0025562	0,4228		
Α	2	0,0044011	0,6450		
	1	0,0099520	0,8890		

ci rendiamo conto come le portate bianche sono maggiori di quelle nere circa di 100-150 volte.

2. DIMENSIONAMENTO DEGLI SPECHI E VERIFICA DELLA VELOCITÀ

Per il calcolo dimensionamento degli spechi si adotta la formula di "Chezy":

$$Q = \Omega \cdot \chi \cdot \sqrt{R \cdot J}$$

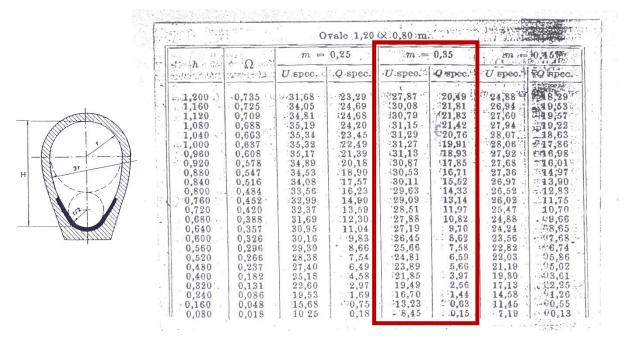
per il coefficiente di "Chezy" si adotta la formula di "Kutter":

$$\chi = \frac{100}{1 + m/\sqrt{R}}$$

in cui m è assunto pari a 0,35.

Dai profili della fogna riportati in allegato, determiniamo la pendenza J dei singoli tratti della fognatura:

pendenze canalizzazioni ${\it J}$							
B2	0,01789						
B1	0,00857						
A3	0,012						
A2	0,00889						
A1	0,0067						


Per le canalizzazioni si sceglie di utilizzare una sezione ovale di dimensioni 1,20 x 0,80 [m].

La tabella sottostante ci fornisce, in relazione allo speco scelto e al parametro m, i valori della velocità media specifica:

$$U_{\rm S}=U/\sqrt{J}$$

e della portata media specifica:

$$Q_s = Q/\sqrt{J}$$

Per cui, nota la pendenza calcoliamo la portata specifica Q_s e con questa entriamo in tabella ricavando (per interpolazione lineare): la velocità specifica U_s , l'altezza di riempimento h e l'area bagnata Ω .

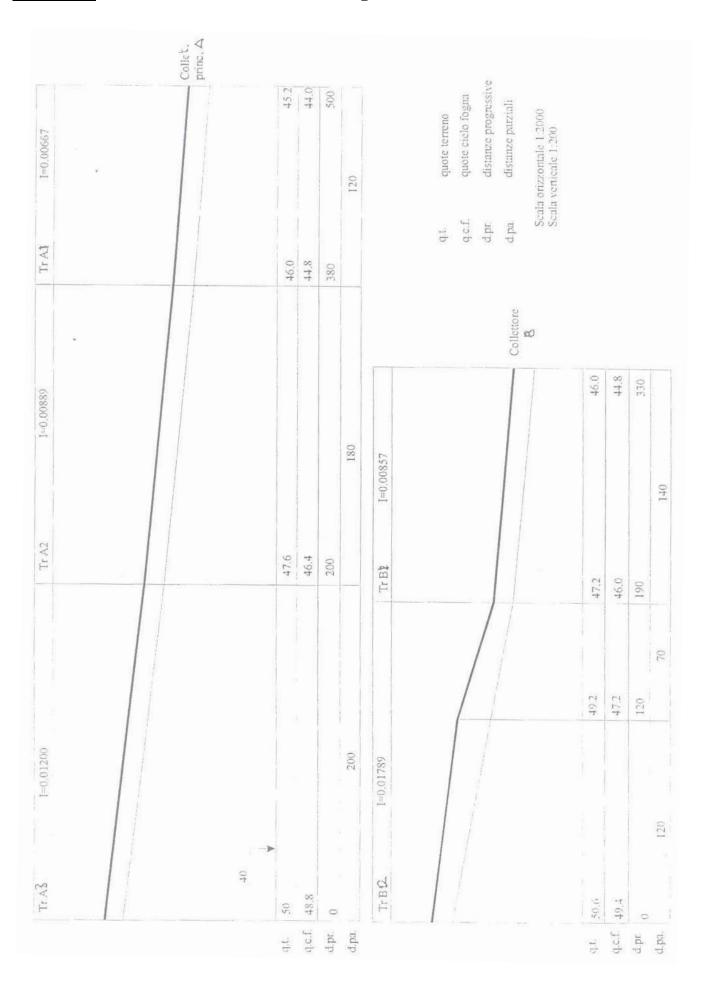
Una volta nota U_s si determina la velocità effettiva nel tratto in considerazione con la relazione:

$$U = U_s \sqrt{J}$$

e si controlla la convergenza tra i valori.

Se questa non risulta essere uguale alla velocità ipotizzata precedentemente, allora si ricorrerà al calcolo per iterazioni successive, affinché non si raggiungerà l'obiettivo di avere le velocità $(U_{ipotizzata} \ e \ U)$ circa uguali. Procedendo in questo modo si aggiorneranno, di volta in volta, il tempo di corrivazione t_c , la portata Q nonché quella specifica Q_s .

Questo procedimento si ripeterà per tutti i singoli tratti della fognatura.


TABELLA FINALE DI CALCOLO

Fogna	Tratto	Σ(φ*Α)	L [m]	U _{ipot.} [m/s]	t ₀ [s]	t _i [s]	t _c [s]	Q _B [mc/s]	Q _B + Q _N [mc/s]	J	J ^½	Q _S [mc/s]	sez. speco	h [m]	Us	U [m/s]
		7500	190	2,00	600	95,00	695,00	0,2635	0,2651	0,01789	0,13375	1,9818	1.20x0.8	0,2787	18,0497	2,4142* ₁
	2			2,4142 * ₁		78,70	678,70	0,2680	0,2695			2,0148		0,2811	18,1319	2,4252*2
В				2,4252 *2		78,34	678,34	0,2680	0,2696			2,0155		0,2811	18,1337	2,4254 *3
	1	18780	140	2,4254	600	57,72	736,07	0,6339	0,6379	0,00857	0,09257	6,8903	1.20x0.8	0,4921	25,0678	2,3206
	1			2,3206		60,33	738,67	0,6323	0,6363			6,8734		0,4915	25,0533	2,3193
		12080	200	2,00	600	100,00	700,00	0,4223	0,4249	0,01200	0,10954	3,8788	1.20x0.8	0,3948	21,6974	2,3768
	3			2,3768		84,15	684,15	0,4292	0,4317			3,9411		0,3984	21,8017	2,3883
				2,3883		83,74	683,74	0,4293	0,4319			3,9427		0,3985	21,8044	2,3885
Α	2	19545	180	2,3885	600	75,36	759,10	0,6456	0,6500	0,00889	0,09429	6,8944	1.20x0.8	0,5323	25,0713	2,3639
A				2,3639		76,15	759,89	0,6452	0,6496			6,8894		0,5321	25,0671	2,3635
		44450	120	2,0000	600	60,00	1558,56	0,8874	0,8974	0,00670	0,08185	10,9633	1.20x0.8	0,6850	27,9585	2,2885
	1			2,2885		52,44	1551,00	0,8905	0,9004			11,0003		0,6863	27,9787	2,2902
				2,2902		52,40	1550,96	0,8905	0,9004			11,0004		0,6863	27,9789	2,2902

- 1 Nel primo calcolo si osserva che la velocità ipotizzata è diversa da quella effettiva; si procede inserendo il valore ottenuto (*1) nella casella sottostante la velocità ipotizzata rifacendo, così, tutto il calcolo del tempo di corrivazione (in realtà cambia t_i), della portata delle acque pluviali (che è in funzione di t_c) e quindi della portata totale e di quella specifica arrivando ad un nuovo valore della velocità specifica ed infine della velocità effettiva.
- 2 Anche nel secondo calcolo si può osservare che le due velocità citate precedentemente sono diverse (*1 *2), quindi si procede con il calcolo per iterazione, inserendo il valore (*2) nella casella della velocità ipotizzata e si continua come nel caso precedente. Nell'ultimo calcolo si raggiunge l'obiettivo, cioè quello di avere le due velocità circa uguali (*2 *3). Questo sta a significare il corretto dimensionamento del canale del tratto di fogna preso in esame e di tutti i parametri che entrano in gioco (t_c , Q_b , $Q_b + Q_n$, Q_s , U_s , U_e h).

Dimensionato il primo tratto **B2**, si procede con il tratto successivo **B1** con un procedimento analogo, considerando, però, che in esso confluisce proprio il tratto B2. Successivamente si dimensionano i tratti **A3**, **A2** e **A1**. In quest'ultimo tratto confluiscono tutti gli altri tratti.

ALLEGATO: Profili terreno e assi condotte fognarie

